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ABSTRACT 

The anabolic effects of nutrition on skeletal muscle may depend on adequate skeletal muscle 

perfusion, which is impaired in older people. Cocoa flavanols have been shown to improve 

flow-mediated dilation, an established measure of endothelial function. However, their effect 

on muscle microvascular blood flow is currently unknown. Therefore, the objective of this 

study was to explore links between the consumption of cocoa flavanols, muscle 

microvascular blood flow and muscle protein synthesis (MPS) in response to nutrition in 

older men. To achieve this objective leg blood flow (LBF), muscle microvascular blood 

volume (MBV) and MPS were measured under postabsorptive and postprandial (I.V glamin, 

dextrose to sustain glucose ~7.5 mmol·l-1) conditions in 20 older men. Ten of these men were 

studied with no cocoa flavanol intervention and a further 10 were studied with the addition of 

350 mg of cocoa flavanols at the same time as nutrition began. Leg [femoral artery] blood 

flow was measured by Doppler ultrasound, muscle MBV by contrast-enhanced ultrasound 

(CEUS) using DefinityTM perflutren contrast agent and MPS using [1, 2-13C2] leucine tracer 

techniques. Our results show that although older individuals do not show an increase in LBF 

or MBV in response to feeding, these absent responses are apparent when cocoa flavanols are 

given acutely with nutrition. However this restoration in vascular responsiveness is not 

associated with improved MPS responses to nutrition. We conclude that acute cocoa flavanol 

supplementation improves muscle macro- and microvascular responses to nutrition, 

independently of modifying muscle protein anabolism. 
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INTRODUCTION 

Skeletal muscles facilitate whole-body locomotory function but also represent the body’s 

largest metabolically active protein reservoir and glucose disposal site (Wolfe 2006). Given 

these crucial functional and metabolic duties ascribed to muscles, age-related sarcopenia (i.e., 

atrophy) represents a major health problem. Indeed, in older-aged people habitually suffer 

reductions in strength and power, which are exacerbated by sarcopenia and culminate in 

dynapenia and loss of independence, resulting in a cyclical syndrome of frailty (Fried et al. 

2001). 

 

In addition to frailty, the link between ageing, sarcopenia and the development of 

cardiovascular and metabolic-related diseases is striking. For example, decreased arterial 

compliance in older age leads to hypertension and coronary artery disease (DeSouza et al. 

2002; Dinenno et al. 1999; Lind & Lithell 1993). In addition, when compared to younger 

individuals, older individuals exhibit 20-30% reductions in limb conduit artery blood flow 

under both postabsorptive (Donato et al. 2006) and postprandial conditions (Skilton et al. 

2005), due to both a decrease in capillary number (Coggan et al. 1992) and increased 

sensitivity to vasoconstrictors such as alpha-adrenergic innervation (Barrett-O’Keefe et al. 

2013). Such blunted blood flow responses may contribute to age-related declines in anabolic 

responses to feeding (Durham et al. 2010), by reducing delivery and/or utility of insulin and 

amino acids (AA) in muscle (Clark et al. 2003; Timmerman et al. 2010).  Thus, it is likely 

that determining strategies for maintaining limb blood flow in older individuals will be 

important for both maintaining muscle mass and reducing cardiovascular/ metabolic disease 

risk.  
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In addition to total limb blood flow, another mediator of insulin and AA delivery to the 

muscle is the distribution of blood flow between so-called nutritive and non-nutritive routes 

(Clark et al. 2006; Clark 2008; Durham et al. 2010), as reduced nutritive blood flow may 

contribute to the anabolic resistance observed with ageing (Cuthbertson et al. 2005; Wilkes et 

al. 2009). We have previously shown that in young individuals pharmacological enhancement 

of ‘nutritive’ muscle microvascular blood flow was not associated with increases in muscle 

protein synthesis (Phillips et al. 2014). However, in older individuals it has been reported that 

there may be a positive relationship between enhanced muscle microvascular blood flow and 

muscle protein anabolic responses to nutrition (Timmerman et al. 2012).  

 

A substantial body of epidemiological and experimental evidence has established that dietary 

interventions increasing the intake of plant-derived nutritional sources are inversely 

associated with cardiovascular disease risk (Joshipura et al. 2001). These beneficial effects 

have been linked to flavanols, a sub-group of flavonoids – the polyphenolic family of anti-

oxidant chemicals, which are found in abundance in various foods (Heiss et al. 2005), 

including, but not limited to red wine, black tea, apples, onions and cocoa (Campia & Panza 

2008). The benefits of flavanol consumption are purported to be due to increased nitric oxide 

(NO) synthase activity and therefore an increased supply of bio-active NO (Fisher et al. 2003; 

Karim et al. 2000), with numerous studies showing that both acute (Duffy et al. 2001; Engler 

et al. 2004; Heiss et al. 2003; Leikert et al. 2002) and chronic flavanol supplementation can 

improve endothelium dependent vasodilation (Fisher et al. 2003; Karim et al. 2000). Interest 

in flavanols spread when initial beliefs that the acidic environment of the stomach degraded 

flavanol oligomers were disproven (Kwik-Uribe & Bektash 2008; Rios et al. 2002). Indeed 

once in the upper intestine, flavanols monomers and dimers can be absorbed and cocoa 
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flavanols monomers/ dimers have been shown to appear in plasma within 30 to 60 minutes 

post-consumption (Richelle et al. 1999; Schroeter et al. 2006). 

 

Interest in cocoa flavanols in particular was triggered by the finding that Kuna Indians living 

off the coast of Panama had a significantly lower incidence of vascular-related diseases 

compared to those living in Panama city (Bayard et al. 2007; Hollenberg et al. 1997), with 

dietary habits, and specifically the high intake of home-prepared cocoa found to be the most 

likely candidate for this disparity (Fisher & Hollenberg 2005). As with other forms of 

flavanols numerous studies have provided evidence that cocoa flavanols can enhance 

endothelial function in healthy individuals (Monahan et al. 2011), smokers (Heiss et al. 

2005), diabetics (Balzer et al. 2008), hypertensive patients (Grassi et al. 2005), patients with 

coronary artery disease (Heiss et al. 2010) and heart transplant recipients (Flammer et al. 

2007). However, whether cocoa flavanols can improve microvascular responses to nutrition 

is wholly unknown.  

 

Our objective was to determine the effect of acute cocoa flavanol supplementation on muscle 

microvascular blood flow and subsequent muscle protein synthetic responses to nutrition 

using an I.V feeding strategy. We hypothesised that acute cocoa flavanol supplementation 

would improve muscle microvascular blood flow responses to feeding and that this would be 

associated with improved muscle protein synthetic responses.    

 

MATERIALS AND METHODS 

Subject characteristics 

We recruited two groups of older men who were matched for age, body mass index (BMI) 

and baseline physiology (Table 1). The first group (Control (CON): n=10, 72.3±1.4 y; BMI 
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26.5±1.2 kg·m2) were studied with no cocoa flavanol supplementation. The second group 

were studied with an acute dose of 350 mg cocoa flavanol supplementation (CocoaVia®, 

Mars Botanical, Mars Inc., MD, USA) during their study day (Cocoa (CC): n=10, 70.6±1.4 y; 

BMI 25.0±0.8 kg·m2). The 350 mg dose was chosen as this dose is similar to the acute dose 

at which improvements in indices of cardiovascular function have been observed (Francis et 

al. 2006; Mogollon et al. 2013; Sansone et al. 2015) and closely represents the dose given 

during chronic intervention studies (Balzer et al. 2008; Engler et al. 2004; Heiss et al. 2015; 

Muniyappa et al. 2008). !

All subjects were initially screened by means of a medical questionnaire, physical 

examination and resting ECG, with exclusions for overt muscle wasting (>2 SD below age 

norms) (Baumgartner et al. 1998), metabolic, respiratory or cardiovascular disorders or other 

signs and symptoms of ill-health. All subjects had normal blood chemistry, were 

normotensive (BP<140/90) and were not prescribed medication. All subjects performed 

activities of daily living and recreation but did not routinely participate in formal exercise 

regimes. All subjects gave their written, informed consent to participate after all procedures 

and risks were explained. This study was approved by The University of Nottingham Ethics 

Committee, complied with the Declaration of Helsinki and was registered at clinicaltrials.gov 

(NCT01734616).  

 

Acute studies 

Subjects were instructed to refrain from strenuous activity for 72 h prior to each study day 

and from alcohol and caffeine for 24 h. Subjects fasted from 2100h the night before (water ad 

libitum) and arrived to the laboratory via non-active means at 0900h. Subjects then had 

polyethylene catheters inserted into the antecubital veins of both arms (one for tracer infusion 

and the other for perflutren microbubble infusion) and the femoral vein of one leg (for venous 
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blood sampling). Blood samples were taken every 20 min. A primed, continuous infusion 

(0.7 mg·kg-1, 1 mg·kg·h-1) of [1, 2-13C2] leucine tracer (99 atoms %; Cambridge Isotopes Ltd, 

Cambridge, MA) was started at 0 min and maintained for the duration of the study with an 

increase to 1.2 mg·kg·h-1 at 130 min when a continuous I.V infusion of Glamin was started 

(102mg·kg·h-1, providing ~20 g AA) and 20% dextrose infused at a rate to maintain blood 

glucose between 7-7.5 mmol·l-1 (for Glamin composition see Table 2). The CC group was 

also provided with a single dose of 350 mg cocoa flavanol supplementation as I.V nutrition 

began. Muscle biopsies of m. vastus lateralis were taken at 0, 120 and 250 min using the 

conchotome biopsy technique (Dietrichson et al. 1987), with 1% lignocaine as local 

anaesthetic. The muscle tissue was washed in ice-cold saline to remove excess blood with 

visible fat and connective tissue removed, before being snap frozen in liquid nitrogen and 

stored at -80°C until further analysis (Figure 1).  

 

Leg Blood Flow (LBF)  

After 50 min lying supine, measurements of LBF (femoral artery) were made over 40 min, 

with these values were designated as BASAL. This was repeated at 180 min (50 min after the 

start of Glamin and dextrose infusions) with these measurements labelled as FED. A mean 

value from three measurements on each leg was used to obtain the final value, no significant 

differences were observed between the three measurements. LBF was measured using 

Doppler ultrasound (iU22; Philips Ultrasound, CA, USA). All measurements were taken with 

the subject supine, with no visual or aural stimuli. A linear array 9-3 MHz frequency probe 

(Philips Ultrasound) was used to measure mean blood velocity and arterial lumen diameter in 

the common femoral artery of one leg. Measurements were made 2-3 cm proximal to the 

bifurcation of the femoral artery to minimize the effect of turbulence; the insonation angle 

was <60°. Arterial lumen diameter (mm) was measured by video callipers for each 
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measurement and defined as the maximum distance between the media-adventitia interface of 

the near wall and the lumen-intima interface of the far wall of the vessel. LBF (l.min-1) was 

calculated as: mean blood velocity (cm.sec-1) × π × (femoral artery radius (mm))2)/1000 × 60. 

 

Microvascular Blood Volume (MBV) 

At 110 min (BASAL) and 240 min (110 min after the start of nutrition (FED)), measurements 

of MBV in the m. vastus lateralis were made using contrast enhanced ultrasound (CEUS), as 

previously described (Sjøberg et al. 2011). In brief, a linear array transducer (L9-3 MHz; 

Philips Ultrasound) was fixed to the thigh for the duration of the study to allow cross-

sectional imaging of the m. vastus lateralis. A 1.5ml suspension of perflutren (Definity; 

Lantheus Medical Imaging, MA, USA) microbubbles was diluted to 20ml and infused at a 

rate of 1.2ml·min-1. Real-time imaging was performed at a low-mechanical index (0.08) for 9 

min to allow attainment of a steady-state microbubble signal. After this period a high 

mechanical index (1.20) flash was used to destroy the microbubbles, allowing recording of 

the replenishment of the microbubbles in the vasculature within the ultrasound beam during a 

45 sec replenishment period. The acoustic index (AI) generated from the resonating 

microbubbles is proportional to the microbubble concentration in the region of interest (ROI) 

(Wei et al. 1998). Four destruction-replenishment cycles were recorded for each MBV 

measurement (BASAL and FED). 

 

Data from these recordings were exported to quantification software (Q-Lab; Philips 

Ultrasound) for analysis. ROI were drawn free-hand and selected to be free of connective 

tissue and large vessels. The selected ROI was copied for each recording to ensure that the 

ROI was identical for both BASAL and FED conditions. The AI obtained during the first 0.5 

sec was averaged and subtracted from the AI recorded during the remaining time to eliminate 
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background noise and contribution from any rapid filling vessels in the ROI. Calculations 

were made in accordance to Wei et al., with AI vs. time curves fitted to the equation: y = A[1 

– e-β(t-β
t)], where t is time (s), Bt the time used for background subtraction, y is the acoustic 

intensity at any given t, A is the plateau AI defined as MBV and β is the flow rate constant 

(1/s) that determines the rate of rise of AI, proportional to microvascular flow velocity (MFV;  

(Krix et al. 2005; Wei et al. 1998)). The product of Aβ with the unit volume blood-1
·volume 

tissue-1
·second-1 is proportional to microvascular blood flow (MBF) (Mitchell et al. 2013).  

 

Muscle Protein Synthesis (MPS) 

Approximately 20mg of muscle tissue was used for measures of MPS, as previously 

described (Kumar et al. 2012). In brief, the myofibrillar pellet was precipitated by 

homogenisation and centrifugation with the soluble myofibrillar protein then precipitated by 

perchloric acid. Protein-bound AA’s were released by acid hydrolysis in Dowex H+ resin 

slurry before being purified by ion exchange chromatography on Dowex H+ resin. The AA’s 

were then derivatized as their n-acetyl-N-propyl esters as previously described (Wilkinson et 

al. 2008). Incorporation of [1, 2-13C2] leucine into protein was determined by gas 

chromatography-combustion-isotope ratio mass spectrometry (Delta Plus XP, Thermofisher 

Scientific, Hemel Hempstead, UK) using our standard techniques (Babraj et al. 2005), with 

the fractional synthetic rate (FSR) of myofibrillar protein determined from the incorporation 

of [1, 2-13C2], using the precursor labelling of venous α-KIC between subsequent muscle 

biopsies (Kumar et al. 2009). Plasma phenylalanine concentrations were measured via our 

standard techniques using a 2H2 phenylalanine internal standard, with reference to a standard 

curve of known concentration (Phillips et al. 2015).  

 

Immunoblotting and Plasma Insulin 



	 10	

To investigate the possible effects of cocoa flavanols via enhanced LBF/ MBV on anabolic 

signalling we measured protein phosphorylation of AKT and P70S6K1 (as likely indicators 

of such activity) in response to feeding. We also measured protein phosphorylation of 

endothelial nitric oxide synthase (eNOS) to explore possible mechanisms for the increased 

responses in LBF/ MBV we observed with cocoa flavanol supplementation. The supernatant 

(sarcoplasmic fraction) obtained from the myofibrillar preparation described above, was 

standardized to a protein concentration of 1 mg·ml-1 by dilution with Laemmli buffer, mixed 

and heated at 95°C for 5 min before 15 µg of protein/lane was loaded on to Criterion XT Bis-

Tris 12% SDS-PAGE gels (Bio-Rad, Hemel Hempstead, UK) for electrophoresis at 200 V for 

60 min. Proteins were electroblotted on to 0.2 µm PVDF membranes (Bio-Rad) at 100 V for 

30 min and membranes blocked in 5% low-fat milk in TBS-T (Tris Buffered Saline and 0.1% 

Tween-20; both Sigma-Aldrich, Poole, UK) for 1 h; membranes were rotated overnight with 

primary antibody (Cell Signalling Technology, Boston, USA) at 1:2000 at 4°C. Membranes 

were washed (3×5 min) with TBS-T and incubated for 60 min at room temperature with 

HRP-conjugated anti-rabbit secondary antibody (Cell Signalling Technology, Hertfordshire, 

UK), before further washing (3×5 min) with TBS-T and incubation for 5 min with ECL 

reagents (Enhanced chemiluminescence kit; Immunstar; Bio-Rad, Hemel Hempstead, UK). 

Blots were imaged and quantified by peak density within the linear range using the Chemidoc 

XRS system (Bio-Rad, Hemel Hempstead, UK). Coomassie staining was used to correct for 

loading (Welinder & Ekblad 2011). 

 

Postabsorptive and fed plasma insulin concentrations were measured using undiluted samples 

and high-sensitivity insulin enzyme linked immunosorbent assays (ELISA; DRG Instruments 

GmbH, Marburg, Germany) according to manufacturer’s protocol. 
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Statistical analyses 

Statistical analyses were performed using Graph Pad Prism Version 6.00 (La Jolla, CA, 

USA). All data are reported as means ± SEM with the threshold for significance set at P<0.05 

with trends reported as P<0.1. We applied Students t-tests to assess LBF, MBV, MPS, plasma 

insulin and α-KIC responses to nutrition and ANOVA with Bonferroni post-hoc analysis to 

compare between the groups. 

 

RESULTS 

Measures of LBF 

The CON group did not demonstrate increased LBF in response to nutrition (0.32±0.04 vs. 

0.32±0.04 l·min-1), a response that was apparent in the CC group (0.47±0.03 vs. 0.54±0.04 

l·min-1, P<0.01). Although this is likely partly attributable to the higher BASAL LBF in the 

CC group (0.47±0.03 vs. 0.32±0.04 l·min-1, P<0.05), this disparate response to nutrition, 

resulted in FED LBF values that were significantly higher in the CC group compared to the 

CON group (0.54±0.04 vs. 0.32±0.04 l·min-1, P<0.05) (Figure 2). 

 

Measures of MBV 

In agreement with our previous work and the work of Sjoberg et al., we found that with an 

infusion of 1.2ml·min-1 of Definity microbubbles a plateau signal was achieved at 

approximately 6 min (Phillips et al. 2014; Sjøberg et al. 2011). Based on this an infusion time 

of 9 min was used before the measurements of MBV were obtained. The combined I.V 

nutrition strategy of 20% Dextrose at a rate to achieve blood glucose of 7-7.5mmol·l-1 and 

102mg·kg·h-1 of Glamin (following a 34mg·kg-1 prime) was not able to elicit a significant 

increase in MBV in the CON group (AI: 1.52±0.18 vs. 1.62±0.19; 6%). The CC group did 

demonstrate a significant (20%) increase in MBV in response to nutrition (1.24±0.17 vs. 
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1.43±0.15, P<0.01; Figure 3). Neither group demonstrated a significant increase in flow rate 

constant (β-value) in response to nutrition (CON: BASAL, 0.13±0.02 vs. FED, 0.13±0.02; 

CC: BASAL, 0.11±0.01 vs. FED, 0.12±0.01). In keeping with the results for MBV, MBF 

(MBV×β-value) increased only in the CC group in response to nutrition (CON: BASAL, 

0.21±0.05 vs. FED, 0.21±0.04; CC: BASAL, 0.15±0.03 vs. FED, 0.17±0.03, P<0.05). 

 

Plasma Amino Acid and Keto-acid Concentrations 

Postabsorptive plasma phenylalanine concentrations were similar between the groups (CON: 

67.49 ± 3.34 vs. CC: 66.41 ± 2.08 µM) and increased significantly, but to the same extent in 

response to feeding in both groups (CON: 115.94 ± 4.34 vs. CC: 120 ± 4.13 µM; P<0.001). 

Steady-state KIC enrichment was also observed throughout both conditions (BASAL, CON: 

4.81 ± 0.21 vs. CC: 5.33 ± 0.21; FED, CON: 5.79 ± 0.21 vs. CC: 6.38 ± 0.18 APE) and was 

not significantly different between the groups.  

 

Myofibrillar MPS 

Contrary to the results for LBF and MBV, both groups demonstrated significant increases in 

MPS in response to feeding (CON: BASAL, 0.052±0.006 vs. FED, 0.074±0.006%·h-1; CC: 

BASAL, 0.042±0.005 vs. FED, 0.068±0.010%·h-1, both P<0.01). Neither the magnitude of 

this response (CON: 57±16 vs. CC: 73±20%), nor the BASAL (CON: 0.052±0.006 vs. CC: 

0.042±0.005%·h-1) or FED (CON: 0.074±0.006 vs. CC: 0.068±0.010%·h-1) MPS values were 

significantly different between the groups (Figure 4).  

 

Plasma Glucose and Insulin 

Despite the greater increase in LBF and MBV in response to feeding in the CC group this 

was not associated with an increased dextrose infusion to maintain blood glucose at 7-7.5 

mmol·l-1, as there was no significant difference between the groups (AUC, CON: 
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560.40±41.06 vs. CC: 479.80±42.75 ml·min-1; Figure 5). This was also true for FED plasma 

insulin values, which were not significantly different between the groups (AUC, CON: 

30.72±9.15 vs. CC: 53.02±9.51 µUnits·ml-1; Figure 5). 

 

Immunoblotting 

There were no differences in BASAL or FED phosphorylation values of P70S6K1 (CON: 

BASAL, 1.01±0.03; FED, 1.05±0.04; CC: BASAL, 0.91±0.05; FED, 0.81±0.09 Arbitrary 

unit of optical density (AU)), AKT (CON: BASAL, 1.18±0.06; FED, 1.16±0.16; CC: 

BASAL, 1.75±0.11; FED, 1.52±0.16 AU) or eNOS (CON: BASAL, 0.90±0.03; FED, 

1.00±0.16; CC: BASAL, 1.02±0.06; FED, 1.17±0.14 AU) between the groups. Neither group 

demonstrated a significant increase in phosphorylation of any of the aforementioned targets 

in response to nutrition. 

 

DISCUSSION 

In this study, we have for the first time explored the effect of acute cocoa flavanol 

supplementation upon muscle vascular and muscle protein anabolic responses to nutrition in 

older individuals. We report that LBF and MBF responses to feeding do not appear to be rate-

limiting for MPS in older men since acute cocoa flavanol supplementation alongside mixed 

macro-nutrient provision improved macro- and microvascular responses to nutrition but this 

did not enhance anabolic responses to nutrition. 

 

Previously we have shown that resistance exercise training (RE-T) can restore age-related 

reductions in LBF in response to feeding (Phillips et al. 2012), and more recently have 

discovered the same to be true for MBF (Phillips et al. 2015). This intervention however, 

required 20 weeks of whole-body RE-T, a commitment that even irrespective of time is not 
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achievable by all older individuals due to physical and/ or socio-economic constraints. In an 

attempt to find a more time-efficient method to improve vascular responses to nutrition, we 

employed a strategy whereby we infused methacholine - a pharmacological vasodilator, into 

the femoral artery of young, healthy males to assess the impact of pharmacological increases 

in LBF on both MBF and MPS. Interestingly in these individuals we found that 

methacholine, as expected, was able to increase macro- and microvascular responses to 

mixed macronutrient (I.V) “feeding”, but that this was not associated with improved MPS 

responses (Phillips et al. 2014). We rationalised that this lack of association may be due to 

already optimal vascular and muscle protein synthetic responses to nutrition in the young that 

are not apparent in older individuals (Cuthbertson et al. 2005; Phillips et al. 2012). In 

addition, we considered the difficulties in applicability of a pharmacological agent as a 

health-based intervention tool and instead moved towards using cocoa flavanols, a 

neutraceutical agent that has already been shown to be well tolerated (Balzer et al. 2008) and 

effective at improving vascular function in a wide variety of healthy and disease-based 

cohorts (Heiss et al. 2010).     

 

In young and middle aged subjects, a well-defined response to nutrient intake is increased 

limb arterial blood flow (Raitakari et al. 2000) but as we reported previously, such responses 

are reduced or absent in older people (Phillips et al. 2012). Here we have again shown that 

age-related decrements in LBF are associated with impairments in muscle MBV responses to 

feeding, findings that are consistent with reports of decrements in fed-state forearm MBF 

(inferred from indirect measurements) (Skilton et al. 2005) and also the absence of increased 

muscle MBF in older people fed EAA and sucrose (Timmerman et al. 2012). Whereas it is 

well established that acute bouts of exercise enhance microvascular perfusion in both human 

(Vincent et al. 2006) and rodent muscle (Sjøberg et al. 2011), the effects of an acute 
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neutraceutical intervention (in this case cocoa flavanols) on muscle MBF in response to 

nutrition, have until now remained poorly defined. Here, we have shown that 350 mg cocoa 

flavanols improved nutrient-dependent increases in both LBF and muscle MBF in older men.  

 

Contrary to the purported mechanisms for exercise-training induced improvements in MBF 

(which include angiogenesis (Gavin et al. 2007), capillarization (McCall et al. 1996) and 

vascular remodelling of the arteriolar network (Weber et al. 2013)), independent mechanisms 

must underlie the results observed in this acute intervention study as the compressed time-

frame negates the possibility for the mechanisms outlined above. Based on the well-

established improvements in endothelium dependent vasodilation afforded by the 

consumption of cocoa flavanols, possible mechanisms for this include altered: metabolite 

profiles (Schroeter et al. 2006), cell signaling pathways, gene expression and/ or protein 

activity (Middleton et al. 2000; Scalbert et al. 2005), although our results suggest that this 

improvement is not linked to insulin signaling pathways as there were no differences in 

plasma insulin, proximal insulin signaling (AKT) or dextrose requirement to maintain a fixed 

blood glucose between the groups.  

 

Although MPS increases after oral consumption (Atherton et al. 2010) or I.V infusions of 

essential AA are well accepted (Anthony et al. 2000; Bennet et al. 1990; Millward 2012) 

previous work by our group (Cuthbertson et al. 2005) and others (Volpi et al. 2000) has 

demonstrated ‘anabolic resistance’, whereby older men demonstrate blunted (compared to 

those in younger men) fed-state increases in MPS. Such anabolic resistance has not only been 

conjectured by us and others to contribute to the sarcopenia of ageing but it also appears to be 

a common feature of many kinds of muscle atrophy (e.g. with immobilization (Glover et al. 

2008), reduced physical activity (Breen et al. 2013), heart failure (Toth et al. 2010), obesity 
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(Guillet et al. 2009; Murton et al. 2015) and cancer (Williams et al. 2012)), suggesting a final 

common pathway for a variety of insults resulting in diminished anabolism. Whereas the 

regulatory mechanisms of anabolic resistance remain poorly defined, possible links between 

reduced muscle MBF and diminished anabolic responses to plasma nutrient availability may 

be a general feature of a number of conditions.  

 

We have now defined the relationship between fed-state muscle protein anabolism and MBF 

in older individuals and against our expectations; we found that despite cocoa flavanols 

resulting in greater (in comparison with an independent age-matched group) fed-state LBF 

and MBF responses, increases in MPS were similar between groups. This finding was based 

on a 2-hour window of fed-state MPS investigation, the postprandial period that has been 

well defined by our group (Atherton et al. 2010; Mitchell et al. 2015a; Mitchell et al. 2015b). 

Indeed, our recent work has demonstrated that in older individuals, in response to both 20 g 

whey protein and 3 g leucine-enriched essential amino acids, anabolic responses are apparent 

over the 0-2 hour period but not evident over the subsequent 2-4 hours. Therefore it would 

seem that interventions aimed at increasing the acute amplitude of MPS are most critical and 

that the duration appears to be more fixed (in the absence of accompanying exercise 

(Drummond et al. 2008). Although using this study design we cannot be certain that longer 

measures of MPS would not have shown increases in MPS in the CC group, we predict this 

would not be the case. 

 

We also found that although cocoa flavanols improved vascular responses to nutrition, this 

was not associated with any enhancement of eNOS signaling. Indeed, the increases in MPS in 

both groups in response to feeding were not associated with enhancement of P70S6K1 or 

AKT signaling. These lack of associations are not however surprising given that the 
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relationship between the degree of fed-state AKT phosphorylation and that of its supposed 

metabolic effects are poorly related (Greenhaff et al. 2008). 

 

We acknowledge some potential study limitations. We were unable to obtain data on flavanol 

bioavailability for this study. However, flavanol plasma availability is known to occur within 

30-60 min of consumption (Richelle et al. 1999), demonstrating that flavanol bioavailability 

upon oral consumption occurs within our period of measurement and fits with our 

observation of an acute effect on blood flow. Due to the invasive nature of the acute studies 

we performed with multiple muscle biopsies and central (femoral venous) cannulation, we 

chose not to study the same cohort twice, choosing rather to minimize the sampling burden 

on our subjects. A fundamental limitation of the CEUS technique for measuring MBF is that 

it cannot be used to compare absolute values between individuals due to differences in the 

architecture of muscle blood vessels and therefore definition of ROI in different people; thus, 

we were unable to directly compare values between our subjects. However, delta changes 

within subjects in each group in response to a stimulus is a robust measure and thus the 20% 

feeding-induced increase in MBV in the CC group is comparable to the CON group that 

showed no significant change in MBV in response to our feeding regime. Furthermore, the 

effects (if any) of blood flow in modulating muscle protein turnover may depend, in a 

currently unknown way upon the mode of feeding and the composition or volume of the feed, 

so that our results may not be applicable to the effects of other patterns of feeding. For 

example, these results may not be fully representative of oral feeding, where additional 

factors such as gut hormones (e.g. incretins) may elicit an effect. However, although most of 

the non-essential AA’s would be sequestered on first pass splanchnic extraction, the essential 

AA’s (which impact MPS) would be largely peripherally available to muscle minimising the 

potential for route of delivery to effect our findings! (Abdulla et al. 2014). Finally, we 
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acknowledge that these findings may not represent those found in an alternative cohort (e.g. 

those with co-morbidities or difference baseline characteristics). For example, it may be that 

in sarcopenic or obese individuals reduced MBF is indeed a facet of blunted responses to 

anabolic stimuli for which cocoa flavanols may be beneficial. Similarly this may also be true 

for older females who have been shown to have distinct anabolic responses to males (Smith 

et al. 2008, Smith et al. 2012) despite similarly blunted leg blood flow responses to feeding 

(Bukhari et al. 2015). 

 

To conclude, we have shown that macro- and microvascular blood flow responses to mixed 

nutrition (I.V AA (~20 g AA, 8 g EAA (equivalent to a small chicken portion or 20 g whey 

protein) and dextrose) can be improved by acute cocoa supplementation in older men, but 

that this improvement does not enhance muscle protein anabolic responses to nutrition. These 

data imply that neutraceutical strategies based on cocoa flavanol supplementation could be 

used to improve muscle microvascular recruitment in postprandial periods, which although 

may not have positive effects on muscle protein metabolism, could positively impact on other 

aspects of metabolism (i.e. insulin sensitivity, glucose clearance) in older individuals. We 

believe that this, and the potential of long-term cocoa flavanol supplementation to improve 

different elements of muscle metabolism warrant further investigation. 
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TABLES 

Table 1. Subject characteristics 

 Control Cocoa 

Body mass Index (kg·m2) 26.5±1.2 25.0±0.8 

Lean whole body mass (kg) 52.1±1.66 53.4±1.22 

Lean leg mass (kg) 8.42±0.43 8.71±0.29 

Fasting glucose (mmol·l-1) 5.1±0.1 5.3±0.2 

Systolic BP (mmHg) 132±4 134±5 

Diastolic BP (mmHg) 85±3 83±3 

Resting HR (bpm) 66±2 60±3 

 

  



	 29	

Table 2. Glamin® composition per 1000 mL 

Constituent Content (g) Constituent Content (g) 

Alanine 16.0 
Leucine 

7.90 

Arginine 11.30 Lysine-Acetate: 

Corresp to Lysine 

12.70 

9.0 Aspartic Acid 
3.40 

Glutamic Acid 5.60 Methionine 5.60 

Glycyl-Glutamine: 

Corresp to Glycine 

Corresp to Glutamine 

30.27 

10.27 

20.0 

Phenylalanine 5.85 

Proline 6.80 

Serine 4.50 

Glycyl-Tyrosine: 

Corresp. to Glycine 

Corresp. to Tyrosine 

3.45 

0.94 

2.28 

Threonine 5.60 

Tryptophan 1.90 

Valine 7.30 

Histidine 6.80 Citric Acid to pH 5.8 

Isoleucine 5.60 Water to 1000 mL 
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FIGURE CAPTIONS 

Figure 1. Acute study protocol 

 

Figure 2. Femoral artery blood flow in old male subjects in BASAL (post-absorptive) and 

FED conditions (102mg·kg·h-1 Glamin and 20% dextrose to maintain blood glucose between 

7-7.5 mmol·l-1) with (Cocoa) and without (Control) the addition of 350 mg cocoa flavanols. 

Values are means ± SEM for n=10 in each group. **P<0.01 vs. BASAL in the same group; ^ 

P<0.05 vs. Control in the same condition. BASAL to FED comparisons via paired student’s t-

test. Group comparisons via ANOVA with Bonferroni post-hoc analysis. 

 

Figure 3. Microvascular refilling curves after destruction of Definity microbubbles in old 

male subjects in BASAL (post-absorptive) and FED conditions with (Cocoa; C) and without 

(Control; A) 350 mg cocoa flavanols. Microvascular blood volume presented as the plateau 

value acoustic index (A value) in old male subjects in BASAL and FED conditions with 

(Cocoa; D) and without (Control; B) 350 mg cocoa flavanols. Values are means ± SEM for 

n=10 in each group. **P<0.001 vs. BASAL. Analysis via paired student’s t-test. 

 

Figure 4. Muscle protein synthesis in response to feeding with (Cocoa) and without (Control) 

350 mg cocoa flavanols in old male subjects. Values are means ± SEM for n=10 in each 

group. **P<0.01 vs. BASAL. BASAL to FED comparisons via paired student’s t-test. Group 

comparisons via ANOVA with Bonferroni post-hoc analysis. 

 

Figure 5. Dextrose infusion (20%) required to maintain a blood glucose value of 7-7.5 

mmol·l-1 and plasma insulin values in response to feeding with (Cocoa) and without (Control) 
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350 mg cocoa flavanols in old male subjects. Values are means ± SEM for n=10 in each 

group. 
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FIGURES 

Figure 1 
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Figure 2  
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Figure 3 
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Figure 4 
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Figure 5 

 


