236 research outputs found

    What Type of Research Is Done in the Laboratory of Pharmaceutical Analytical Chemistry of the University of Geneva?

    Get PDF
    This article presents briefly the main research projects developed in the Laboratory of Pharmaceutical Analytical Chemistry at the University of Geneva. This laboratory is particularly concerned about enantiomeric separation of drugs and phytochemical analysis. In this context, techniques such as gas, liquid and supercritical fluid chromatography as well as capillary electrophoresis are studied. Furthermore, the development of new sample preparation techniques is investigated

    Evaluation of Solid-Phase Microextraction Desorption Parameters for Fast GC Analysis of Cocaine in Coca Leaves

    Get PDF
    By its simplicity and rapidity, solid-phase microextraction (SPME) appears as an interesting alternative for sample introduction in fast gas chromatography (fast GC). This combination depends on numerous parameters affecting the desorption step (i.e., the release of compounds from the SPME fiber coating to the GC column). In this study, different liner diameters, injection temperatures, and gas flow rates are evaluated to accelerate the thermal desorption process in the injection port. This process is followed with real-time direct coupling a split/splitless injector to a mass spectrometer by means of a short capillary. It is shown that an effective, quantitative, and rapid transfer of cocaine (COC) and cocaethylene (CE) is performed with a 0.75-mm i.d. liner, at 280°C and 4 mL/min gas flow rate. The 7-µm polydimethylsiloxane (PDMS) coating is selected for combination with fast GC because the 100- µm PDMS fiber presents some limitations caused by fiber bleeding. Finally, the developed SPME-fast GC method is applied to perform in less than 5 min, the quantitation of COC extracted from coca leaves by focused microwave-assisted extraction. An amount of 7.6 ± 0.5 mg of COC per gram of dry mass is found, which is in good agreement with previously published result

    Estimating spatial and temporal variations in solar radiation within Bordeaux winegrowing region using remotely sensed data

    No full text
    International audienceAims: This paper presents a study solar radiation spatial and temporal variations in Bordeaux winegrowing area, for a 20 year period (1986-2005). Methods and results: Solar radiation data was retrieved from the HelioClim-1 database, elaborated from Meteosat satellite images, using the Heliosat-2 algorithm. Daily data was interpolated using ordinary kriging to produce horizontal solar radiation maps at a 500 m resolution. Using a digital elevation model, high resolution daily solar radiation maps with terrain integration were then produced for the period 2001-2005, at a 50 m resolution. The long term (20 years) analysis of solar radiation at low spatial resolution (500 m) showed a west to east decreasing gradient within Bordeaux vineyards. Mean August-to-September daily irradiation values, on horizontal surface, were used to classify Bordeaux winegrowing areas in three zones: low, medium, and high solar radiation areas. This initial zoning was upscaled at 50 m resolution, applying a local correction ratio, based on 2001-2005 solar radiation on inclined surface analysis. Grapevine development and maturation potential of the different zones of appellation of origin of Bordeaux winegrowing area are discussed in relation with this zoning. 2 Conclusions: Solar radiation variability within Bordeaux winegrowing area is mainly governed by terrain slopes and orientations, which induce considerable variations within the eastern part of Bordeaux vineyards. Significance and impact of the study: Solar radiation has a major impact on vineyard water balance, grapevine development and berry ripening. However, irradiation data is seldom available in weather stations records. This paper underline the interest of high resolution cartography of solar radiation, using satellite sensing and terrain effect integration, for agroclimatic studies in viticulture

    Hygroline derivatives from Schizanthus tricolor and their anti-trypanosomatid and antiplasmodial activities

    Get PDF
    Chemical investigation of the alkaloid extract of the aerial parts of Schizanthus tricolor led to the targeted isolation of 26 hygroline derivatives of which 20 were fully characterized. They have not yet been described in the literature and their structures were established by 1D and 2D NMR, UV and IR spectroscopy, and HRESIMS. The configuration was determined by Gauge-Independent Atomic Orbital NMR chemical shift calculations supported by the advanced statistical method DP4 plus, vibrational circular dichroism, and measurement of optical rotation. Their anti-trypanosomatid, antiplasmodial and cytotoxic activities were measured. Several compounds exhibited low micromolar activity against Plasmodium falciparum. None of the identified molecules was cytotoxic

    Macroscopic Coherent Rectification in Andreev Interferometers

    Full text link
    We investigate nonlinear transport through quantum coherent metallic conductors contacted to superconducting components. We find that in certain geometries, the presence of superconductivity generates a large, finite-average rectification effect. Specializing to Andreev interferometers, we show that the direction and magnitude of rectification can be controlled by a magnetic flux tuning the superconducting phase difference at two contacts. In particular, this results in the breakdown of an Onsager reciprocity relation at finite bias. The rectification current is macroscopic in that it scales with the linear conductance, and we find that it exceeds 5% of the linear current at sub-gap biases of few tens of \mu eV's.Comment: 5 pages, 3 figure

    Advances on MBE selective area growth of III-nitride nanostructures: from nanoLEDs to pseudo substrates

    Get PDF
    The aim of this work is to provide an overview on the recent advances in the selective area growth (SAG) of (In)GaN nanostructures by plasma assisted molecular beam epitaxy, focusing on their potential as building blocks for next generation LEDs. The first three sections deal with the basic growth mechanisms of GaN SAG and the emission control in the entire ultraviolet to infrared range, including approaches for white light emission, using InGaN disks and thick segments on axial nanocolumns. SAG of axial nanostructures is eveloped on both GaN/sapphire templates and GaN-buffered Si(111). As an alternative to axial nanocolumns, section 4 reports on the growth and characterization of InGaN/GaN core-shell structures on an ordered array of top-down patterned GaN microrods. Finally, section 5 reports on the SAG of GaN, with and without InGaN insertion, on semi-polar (11-22) and non-polar (11-20) templates. Upon SAG the high defect density present in the templates is strongly reduced as indicated by a dramatic improvement of the optical properties. In the case of SAG on nonpolar (11-22) templates, the formation of nanostructures with a low aspect ratio took place allowing for the fabrication of high-quality, non-polar GaN pseudo-templates by coalescence of these nanostructures

    Seismic Wave Propagation Simulations on Low-power and Performance-centric Manycores

    Get PDF
    International audienceThe large processing requirements of seismic wave propagation simulations make High Performance Computing (HPC) architectures a natural choice for their execution. However, to keep both the current pace of performance improvements and the power consumption under a strict power budget, HPC systems must be more energy e than ever. As a response to this need, energy-e and low-power processors began to make their way into the market. In this paper we employ a novel low-power processor, the MPPA-256 manycore, to perform seismic wave propagation simulations. It has 256 cores connected by a NoC, no cache-coherence and only a limited amount of on-chip memory. We describe how its particular architectural characteristics influenced our solution for an energy-e implementation. As a counterpoint to the low-power MPPA-256 architecture, we employ Xeon Phi, a performance-centric manycore. Although both processors share some architectural similarities, the challenges to implement an e seismic wave propagation kernel on these platforms are very di↵erent. In this work we compare the performance and energy e of our implementations for these processors to proven and optimized solutions for other hardware platforms such as general-purpose processors and a GPU. Our experimental results show that MPPA-256 has the best energy e consuming at least 77 % less energy than the other evaluated platforms, whereas the performance of our solution for the Xeon Phi is on par with a state-of-the-art solution for GPUs

    The Homeostatic Chemokine CCL21 Predicts Mortality and May Play a Pathogenic Role in Heart Failure

    Get PDF
    Background: CCL19 and CCL21, acting through CCR7, are termed homeostatic chemokines. Based on their role in concerting immunological responses and their proposed involvement in tissue remodeling, we hypothesized that these chemokines could play a pathogenic role in heart failure (HF). Methodology/Principal Findings: Our main findings were: (i) Serum levels of CCL19 and particularly CCL21 were markedly raised in patients with chronic HF (n = 150) as compared with healthy controls (n = 20). A CCL21 level above median was independently associated with all-cause mortality. (ii) In patients with HF following acute myocardial infarction (MI; n = 232), high versus low CCL21 levels 1 month post-MI were associated with cardiovascular mortality, even after adjustment for established risk factors. (iii). Explanted failing human LV tissue (n = 29) had markedly increased expression of CCL21 as compared with non-failing myocardium (n = 5). (iv) Our studies in CCR7−/− mice showed improved survival and attenuated increase in markers of myocardial dysfunction and wall stress in post-MI HF after 1 week, accompanied by increased myocardial expression of markers of regulatory T cells. (v) Six weeks post-MI, there was an increase in markers of myocardial dysfunction and wall stress in CCR7 deficient mice. Conclusions/Significance: High serum levels of CCL21 are independently associated with mortality in chronic and acute post-MI HF. Our findings in CCR7 deficient mice may suggest that CCL21 is not only a marker, but also a mediator of myocardial failure. However, while short term inhibition of CCR7 may be beneficial following MI, a total lack of CCR7 during long-term follow-up could be harmful.publishedVersio
    • …
    corecore