20 research outputs found

    Potential Recognition of Accretionary Lapilli in Distal Impact Deposits on Mars: A Facies Analog Provided by the 1.85 Ga Sudbury Impact Deposit

    Get PDF
    Our understanding of the significance and abundance of sedimentary strata on Mars has increased considerably during the last decade. The highly cratered surface of Mars leads to the prediction that impact ejecta deposits, possibly containing accretionary lapilli, should be part of the sediment record. While no impact-induced base surge deposits have been confirmed on Mars, it is likely that they will one day be discovered, and it is important to establish criteria for their recognition in the rock record. The recognition of ejecta deposits containing accretionary lapilli on Mars requires reliable facies models developed from known impact-generated strata on Earth. Sections through ejecta layers formed by the 1850 Ma Sudbury impact event provide data to begin development of such models. These deposits are laterally variable but generally show a vertical decrease in lithic clast size and, where present, an upward fining in accretionary lapilli. In thicker deposits, the accretionary lapilli–bearing portion of sections generally progresses upward from decimeter-scale beds of clast-supported lapilli interlayered with centimeter-scale sandstone beds, to parallel and undulatory laminated lapilli, and sandstones. These are overlain by lapilli stringers and isolated lapilli in parallel-laminated to cross-stratified sandstone. Both grain size and sedimentary structures indicate a succession deposited by an impact-generated base surge during decelerating flow. Thinner deposits of ejecta, possibly laid down on topographic highs, are commonly massive with reverse and normal grading. We compare the accretionary lapilli–bearing strata in the Sudbury ejecta deposits to proposed impact-generated base surge deposits in the Burns formation at Meridian Planum, Mars. Units comprising the Burns formation do not have the internal organization of spherule-bearing layers exhibited by the Sudbury ejecta deposits. Comparison with Sudbury ejecta layers and theoretical considerations indicate that the spherules developed in the Burns formation do not represent grains deposited by a base surge and are most likely diagenetic in origin. However, impact ejecta layers should be present in the sedimentary successions on Mars, and comparison with similar strata on Earth may lead to their eventual identification

    Potential Recognition of Accretionary Lapilli in Distal Impact Deposits on Mars: A Facies Analog Provided by the 1.85 Ga Sudbury Impact Deposit

    Get PDF
    Our understanding of the significance and abundance of sedimentary strata on Mars has increased considerably during the last decade. The highly cratered surface of Mars leads to the prediction that impact ejecta deposits, possibly containing accretionary lapilli, should be part of the sediment record. While no impact-induced base surge deposits have been confirmed on Mars, it is likely that they will one day be discovered, and it is important to establish criteria for their recognition in the rock record. The recognition of ejecta deposits containing accretionary lapilli on Mars requires reliable facies models developed from known impact-generated strata on Earth. Sections through ejecta layers formed by the 1850 Ma Sudbury impact event provide data to begin development of such models. These deposits are laterally variable but generally show a vertical decrease in lithic clast size and, where present, an upward fining in accretionary lapilli. In thicker deposits, the accretionary lapilli–bearing portion of sections generally progresses upward from decimeter-scale beds of clast-supported lapilli interlayered with centimeter-scale sandstone beds, to parallel and undulatory laminated lapilli, and sandstones. These are overlain by lapilli stringers and isolated lapilli in parallel-laminated to cross-stratified sandstone. Both grain size and sedimentary structures indicate a succession deposited by an impact-generated base surge during decelerating flow. Thinner deposits of ejecta, possibly laid down on topographic highs, are commonly massive with reverse and normal grading. We compare the accretionary lapilli–bearing strata in the Sudbury ejecta deposits to proposed impact-generated base surge deposits in the Burns formation at Meridian Planum, Mars. Units comprising the Burns formation do not have the internal organization of spherule-bearing layers exhibited by the Sudbury ejecta deposits. Comparison with Sudbury ejecta layers and theoretical considerations indicate that the spherules developed in the Burns formation do not represent grains deposited by a base surge and are most likely diagenetic in origin. However, impact ejecta layers should be present in the sedimentary successions on Mars, and comparison with similar strata on Earth may lead to their eventual identification

    Biological mats in siliciclastic sediments of the Paleoproterozoic Gunflint Formation, northwestern Ontario, Canada

    No full text
    The Gunflint Formation of southern Superior Province, Canada, contains an extensive array of stromatolite morphologies and associated fossilized bacteria. It, and correlative units in the United States, provided some of the most persuasive early interpretations of stromatolites and evidence of Precambrian bacterial life. This study examined the siliciclastic rocks in the Gunflint Formation and discovered a multitude of features formed by the development of cohesive biogenic mats on bedding surfaces. In former shallow subtidal depositional settings evidence of mat erosion was most common, with the presence of various types of wrinkle structures. Microscopically carbonaceous layers and rip-up fragments representing mats and their eroded remnants are well preserved. This emphasizes the abundance of bacterial life in the shallow nearshore of the Gunflint Formation about 1.88 billion years ago and further indicates an increased flux of reductants was necessary during this time period to establish low oxygen levels in the ocean.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Preservation of carbon isotopes in kerogen from thermally altered Mesoproterozoic lacustrine microbialites

    No full text
    Stable carbon isotope geochemistry is a well-established and reliable tool for studying metabolisms of microbial communities in the Precambrian record; however, the isotopic effects of high-temperature alteration from igneous intrusions (i.e., contact metamorphism) have not been thoroughly explored. The Mesoproterozoic (∼1.4 Ga) Middlebrun Bay Member of the Rossport Formation, Sibley Group, in Ontario, Canada, is composed of carbonaceous stromatolites and microbial laminites preserved in an evaporitic, lacustrine chert–carbonate deposit and is cross-cut by an intrusive mafic sill at the studied locality. Sedimentary organic matter (kerogen) was investigated along two vertical stratigraphic transects to determine the spatial variability of its geochemical preservation. Thermal alteration of the preserved kerogen (as measured by Raman spectroscopy) increased toward the mafic sill, but the alteration was greater for kerogen preserved in carbonate mineralogies compared to that preserved in quartz (chert). Bulk δ13Corg values fluctuate throughout each vertical section, with a total average of −28.2‰ ± 0.8‰; however, values are unexpectedly lower for samples near the mafic sill, approaching −30‰, inconsistent with previously reported patterns. These measurements indicate that thermal alteration of sedimentary rocks does not universally result in 13C enrichment and increased δ13Corg values and suggests that ancient kerogen may be preferentially shielded from postdepositional heating effects due to micrometre-scale differences in mineralogy.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    δ2H of water from fluid inclusions in Proterozoic halite: Evidence for a deuterium-depleted hydrosphere?

    No full text
    δ2H were measured in water present in tiny primary fluid inclusions trapped in Mesoproterozoic (≈1.4 Ga) and Neoproterozoic (≈0.8 Ga) halite crystals. While the hydrogen concentrations range from 300 to 1500 ppm for the whole sample collection, δ2H values range from −74‰ to −54‰ (VSMOW) for the Mesoproterozoic halite sampled from the Sibley Group, Ontario, Canada, and from −89 to −38‰ for the Neoproterozoic halite from the Browne Formation, Officer Basin, Australia. The amount of evaporation required to precipitate halite is accompanied by a deuterium-enrichment of 30‰ to 90‰. It means that the original aqueous solutions had δ2H values comprised between −140‰ and −90‰. Considering the estimated tropical paleolatitudes for both depositional environments, surface waters were most likely significantly deuterium-depleted relative to modern ones. If such interpretation is partly at variance with the geological record, it could be reconciliated with some modelling outputs of the long-term water cycle. Indeed, several mechanisms produce a progressive deuterium-enrichment of the oceans. Those identified so far are the addition of deuterium-rich extraterrestrial water (cometary dust), the loss of H during water photodissociation by ultraviolet radiation in the upper atmosphere, and the isotopic fractionation that takes place during the hydroxylation of nominally-anhydrous mantle rock-forming minerals. We also propose that the major process able to shift through time the δ2Η of the hydrosphere is the reduction of H2O into H2 during the serpentinization of mantle rocks at mid-ocean ridges

    Global importance of oxic molybdenum sinks prior to 2.6 Ga revealed by the Mo isotope composition of Precambrian carbonates

    No full text
    Sedimentary molybdenum (Mo) isotope compositions are a promising paleoredox indicator because the Mo isotope composition of seawater reflects the balance between anoxic and oxic sinks. Most available data are from shales; however, the Mo isotope composition of carbonates also reflects the composition of ancient seawater. Here, we provide an expanded data set of carbonate Mo isotope compositions, including the first data for carbonates older than 2.64 Ga, which we evaluate against a compilation of published data for carbonates, shales, and iron formations spanning geological time. Archean carbonate samples reveal maximum delta Mo-98 values that are generally above 1 parts per thousand. These heavy values indicate that Mn(IV)-oxide or Fe(III)-oxide sinks were sufficiently important to influence the Mo isotope composition of seawater as far back as 2.93 Ga. Comparison of Mo isotope and rare earth element data, as well as residence time considerations, indicates that this metal-oxide influence was likely global. Available Mo isotope data for shales over the same time period generally show crustal values, which we attribute to negligible authigenic enrichment of Mo from seawater due to low ambient concentrations and a paucity of euxinic conditions. Our work demonstrates that the carbonate record provides important new insights into marine paleoredox conditions, especially when shale records are absent or unsuitable, and reinforces the emerging paradigm that oxic Mo sinks were important in the marine realm prior to 2.7 Ga

    Fluvial floodplains prior to greening of the continents : stratigraphic record, geodynamic setting, and modern analogues.

    No full text
    Fluvial floodplains established prior to the greening of continents have long been overlooked, despite their relevance for landscape reconstructions in deep time. The record of fluvial overbank sedimentation dates back as far as theMesoarchean, and mature assemblages of floodplain landforms had already developed at least by the early Palaeoproterozoic. In this review, a critical assessment of pre-vegetation floodplain processes and deposits is carried out through literature compilation and detailed descriptions of case studies. Pre-vegetation floodplains were variably composed of floodbasins, splay complexes (including crevasse- and distributary-channel fills and related splay lobes) and, in minor proportion, by channel levees. The hydrology of ancient floodbasin environments, mainly inferred from the occurrence or lack of evaporite features, is particularly topical and, once critically tested against other palaeo-environmental indicators, can be related to climate or catchment physiography. Pre-Silurian floodplains preferentially developed in rift basins prone to restricted drainage, where low-gradient axial depressions experienced limited stream power and accumulation of cohesive fines. Since supercontinents prone to host mature intracratonic basins first appeared in the Palaeoproterozoic, a causal relationship is established between the rise of modern-style plate tectonics and fluvial floodplains. By comparison, prevegetation overbank records are sparse in foreland, syn-orogenic, or passive-margin basins, where higher gradients and ocean-ward bypass of cohesive fines would have enhanced reworking by adjacent channels. These features are analogue to modern non-vegetated floodplains, with examples drawn from both arid endorheic drainages (Death Valley, California; Salar de Uyuni, Bolivia), and humid exorheic drainages (coastal plains of southern Iceland). Future developments in pre-Silurian sedimentology will help addressing lingering questions related to, for instance, the biogeomorphology of microbial mats and the morphogenetic variability between floodplains developed in different latitudinal climate belts
    corecore