258 research outputs found

    Extra virgin olive oil use is associated with improved post-prandial blood glucose and LDL cholesterol in healthy subjects

    Get PDF
    Extra virgin olive oil (EVOO) is a key component of the Mediterranean diet and seems to account for the protective effect against cardiovascular disease. However, the underlying mechanism is still elusive

    Mycobacterium tuberculosis Immune Response in Patients With Immune-Mediated Inflammatory Disease

    Get PDF
    Subjects with immune-mediated inflammatory diseases (IMID), such as rheumatoid arthritis (RA), have an intrinsic higher probability to develop active-tuberculosis (TB) compared to the general population. The risk ranges from 2.0 to 8.9 in RA patients not receiving therapies. According to the WHO, the RA prevalence varies between 0.3% and 1% and is more common in women and in developed countries. Therefore, the identification and treatment of TB infection (TBI) in this fragile population is important to propose the TB preventive therapy. We aimed to study the M. tuberculosis (Mtb) specific T-cell response to find immune biomarkers of Mtb burden or Mtb clearance in patients with different TB status and different risk to develop active-TB disease. We enrolled TBI subjects as example of Mtb-containment, the active-TB as example of a replicating Mtb status, and the TBI-IMID as fragile population. To study the Mtb-specific response in a condition of possible Mtb sterilization, we longitudinally enrolled TBI subjects and active-TB patients before and after TB therapy. Peripheral blood mononuclear cells were stimulated overnight with Mtb peptides contained in TB1- and TB2-tubes of the Quantiferon-Plus kit. Then, we characterized by cytometry the Mtb-specific CD4 and CD8 T cells. In TBI-IMID, the TB therapy did not affect the ability of CD4 T cells to produce interferon-γ, tumor necrosis factor-α, and interleukin-2, their functional status, and their phenotype. The TB therapy determined a contraction of the triple functional CD4 T cells of the TBI subjects and active-TB patients. The CD45RA- CD27+ T cells stood out as a main subset of the Mtb-specific response in all groups. Before the TB-preventive therapy, the TBI subjects had higher proportion of Mtb-specific CD45RA-CD27+CD4+ T cells and the active-TB subjects had higher proportion of Mtb-specific CD45RA-CD27-CD4+ T cells compared to other groups. The TBI-IMID patients showed a phenotype similar to TBI, suggesting that the type of IMID and the IMID therapy did not affect the activation status of Mtb-specific CD4 T cells. Future studies on a larger and better-stratified TBI-IMID population will help to understand the change of the Mtb-specific immune response over time and to identify possible immune biomarkers of Mtb-containment or active replication

    Decolorization of synthetic melanoidins-containing wastewater by a bacterial consortium

    Get PDF
    The presence of melanoidins in molasses wastewater leads to water pollution both due to its dark brown color and its COD contents. In this study, a bacterial consortium isolated from waterfall sediment was tested for its decolorization. The identification of culturable bacteria by 16S rDNA based approach showed that the consortium composed of Klebsiella oxytoca, Serratia mercescens, Citrobacter sp. and unknown bacterium. In the context of academic study, prevention on the difficulties of providing effluent as well as its variations in compositions, several synthetic media prepared with respect to color and COD contents based on analysis of molasses wastewater, i.e., Viandox sauce (13.5% v/v), caramel (30% w/v), beet molasses wastewater (41.5% v/v) and sugarcane molasses wastewater (20% v/v) were used for decolorization using consortium with color removal 9.5, 1.13, 8.02 and 17.5%, respectively, within 2 days. However, Viandox sauce was retained for further study. The effect of initial pH and Viandox concentration on decolorization and growth of bacterial consortium were further determined. The highest decolorization of 18.3% was achieved at pH 4 after 2 day of incubation. Experiments on fresh or used medium and used or fresh bacterial cells, led to conclusion that the limitation of decolorization was due to nutritional deficiency. The effect of aeration on decolorization was also carried out in 2 L laboratory-scale suspended cell bioreactor. The maximum decolorization was 19.3% with aeration at KLa = 2.5836 h-1 (0.1 vvm)

    Serum Biomarker Profile Including CCL1, CXCL10, VEGF, and Adenosine Deaminase Activity Distinguishes Active From Remotely Acquired Latent Tuberculosis

    Get PDF
    INTRODUCTION: There is an urgent medical need to differentiate active tuberculosis (ATB) from latent tuberculosis infection (LTBI) and prevent undertreatment and overtreatment. The aim of this study was to identify biomarker profiles that may support the differentiation between ATB and LTBI and to validate these signatures. MATERIALS AND METHODS: The discovery cohort included adult individuals classified in four groups: ATB (n = 20), LTBI without prophylaxis (untreated LTBI; n = 20), LTBI after completion of prophylaxis (treated LTBI; n = 20), and healthy controls (HC; n = 20). Their sera were analyzed for 40 cytokines/chemokines and activity of adenosine deaminase (ADA) isozymes. A prediction model was designed to differentiate ATB from untreated LTBI using sparse partial least squares (sPLS) and logistic regression analyses. Serum samples of two independent cohorts (national and international) were used for validation. RESULTS: sPLS regression analyses identified C-C motif chemokine ligand 1 (CCL1), C-reactive protein (CRP), C-X-C motif chemokine ligand 10 (CXCL10), and vascular endothelial growth factor (VEGF) as the most discriminating biomarkers. These markers and ADA(2) activity were significantly increased in ATB compared to untreated LTBI (p ≤ 0.007). Combining CCL1, CXCL10, VEGF, and ADA2 activity yielded a sensitivity and specificity of 95% and 90%, respectively, in differentiating ATB from untreated LTBI. These findings were confirmed in the validation cohort including remotely acquired untreated LTBI participants. CONCLUSION: The biomarker signature of CCL1, CXCL10, VEGF, and ADA2 activity provides a promising tool for differentiating patients with ATB from non-treated LTBI individuals

    Clinical isolates of the modern Mycobacterium tuberculosis lineage 4 evade host defense in human macrophages through eluding IL-1\u3b2-induced autophagy article

    Get PDF
    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), has infected over 1.7 billion people worldwide and causes 1.4 million deaths annually. Recently, genome sequence analysis has allowed the reconstruction of Mycobacterium tuberculosis complex (MTBC) evolution, with the identification of seven phylogeographic lineages: four referred to as evolutionarily "ancient", and three "modern". The MTBC strains belonging to "modern" lineages appear to show enhanced virulence that may have warranted improved transmission in humans over ancient lineages through molecular mechanisms that remain to be fully characterized. To evaluate the impact of MTBC genetic diversity on the innate immune response, we analyzed intracellular bacterial replication, inflammatory cytokine levels, and autophagy response in human primary macrophages infected with MTBC clinical isolates belonging to the ancient lineages 1 and 5, and the modern lineage 4. We show that, when compared to ancient lineage 1 and 5, MTBC strains belonging to modern lineage 4 show a higher rate of replication, associated to a significant production of proinflammatory cytokines (IL-1\u3b2, IL-6, and TNF-\u3b1) and induction of a functional autophagy process. Interestingly, we found that the increased autophagic flux observed in macrophages infected with modern MTBC is due to an autocrine activity of the proinflammatory cytokine IL-1\u3b2, since autophagosome maturation is blocked by an interleukin-1 receptor antagonist. Unexpectedly, IL-1\u3b2-induced autophagy is not disadvantageous for the survival of modern Mtb strains, which reside within Rab5-positive phagosomal vesicles and avoid autophagosome engulfment. Altogether, these results suggest that autophagy triggered by inflammatory cytokines is compatible with a high rate of intracellular bacilli replication and may therefore contribute to the increased pathogenicity of the modern MTBC lineages

    Alternative BCG delivery strategies improve protection against Mycobacterium tuberculosis in non-human primates: Protection associated with mycobacterial antigen-specific CD4 effector memory T-cell populations

    Get PDF
    Intradermal (ID) BCG injection provides incomplete protection against TB in humans and experimental models. Alternative BCG vaccination strategies may improve protection in model species, including rhesus macaques. This study compares the immunogenicity and efficacy of BCG administered by ID and intravenous (IV) injection, or as an intratracheal mucosal boost (ID + IT), against aerosol challenge with Mycobacterium tuberculosis Erdman strain. Disease pathology was significantly reduced, and survival improved, by each BCG vaccination strategy, relative to unvaccinated animals. However, IV induced protection surpassed that achieved by all other routes, providing an opportunity to explore protective immunological mechanisms using antigen-specific IFN-γ ELISpot and polychromatic flow cytometry assays. IFN-γ spot forming units and multifunctional CD4 T-cell frequencies increased significantly following each vaccination regimen and were greatest following IV immunisation. Vaccine-induced multifunctional CD4 T-cells producing IFN-γ and TNF-α were associated with reduced disease pathology following subsequent M.tb challenge; however, high frequencies of this population following M.tb infection correlated with increased pathology. Cytokine producing T-cells primarily occupied the CD4 transitional effector memory phenotype, implicating this population as central to the mycobacterial response, potentially contributing to the stringent control observed in IV vaccinated animals. This study demonstrates the protective efficacy of IV BCG vaccination in rhesus macaques, offering a valuable tool for the interrogation of immunological mechanisms and potential correlates of protection

    Epidemic and pandemic viral infections: impact on tuberculosis and the lung. A consensus by the World Association for Infectious Diseases and Immunological Disorders (WAidid), Global Tuberculosis Network (GTN) and members# of ESCMID Study Group for Mycobacterial Infections (ESGMYC).

    Get PDF
    Major epidemics including some that qualify as pandemics, such as Severe Acute Respiratory Syndrome (SARS), Middle-Eastern Respiratory Syndrome (MERS), Human Immunodeficiency Virus, pandemic H1N1/09 and most recently COVID-19 affect the lung. Tuberculosis (TB) remains the top infectious disease killer but apart from the TB-HIV syndemic, little is known regarding the interaction of viral epidemics and pandemics with TB. The aim of this consensus-based document is to describe the effects of the viral infections resulting in epidemics and pandemics that affect the lung (MERS, SARS, HIV, influenza A (H1N1)pdm/09 and COVID-19) and their interactions with TB. A search of the scientific literature was performed. A writing committee of international experts including the European Centre for Disease Prevention and Control Public Health Emergency (ECDC PHE) team, the World Association for Infectious Diseases and Immunological Disorders (WAidid), the Global Tuberculosis Network (GTN) and members of ESCMID Study Group for Mycobacterial Infections (ESGMYC) was established. Consensus was achieved after multiple rounds of revisions between the writing committee and a larger expert group. A Delphi process involving the core group of authors, excluding the ECDC PHE team identified the areas requiring review/consensus, followed by a second round to refine the definitive consensus elements. The epidemiology, immunology of these viral infections and their interactions with TB are discussed with implications on diagnosis, treatment and prevention of airborne infections (infection control, viral containment and workplace safety). This consensus document represents a rapid and comprehensive summary on what is known on the topic

    Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania.

    Get PDF
    Mycobacterium tuberculosis (Mtb) and helminth infections elicit antagonistic immune effector functions and are co-endemic in several regions of the world. We therefore hypothesized that helminth infection may influence Mtb-specific T-cell immune responses. We evaluated the cytokine profile of Mtb-specific T cells in 72 individuals with pulmonary TB disease recruited from two Sub-Saharan regions with high and moderate helminth burden i.e. 55 from Tanzania (TZ) and 17 from South Africa (SA), respectively. We showed that Mtb-specific CD4 T-cell functional profile of TB patients from Tanzania are primarily composed of polyfunctional Th1 and Th2 cells, associated with increased expression of Gata-3 and reduced expression of T-bet in memory CD4 T cells. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by single IFN-γ and dual IFN-γ/TNF-α and associated with TB-induced systemic inflammation and elevated serum levels of type I IFNs. Of note, the proportion of patients with Mtb-specific CD8 T cells was significantly reduced in Mtb/helminth co-infected patients from TZ. It is likely that the underlying helminth infection and possibly genetic and other unknown environmental factors may have caused the induction of mixed Th1/Th2 Mtb-specific CD4 T cell responses in patients from TZ. Taken together, these results indicate that the generation of Mtb-specific CD4 and CD8 T cell responses may be substantially influenced by environmental factors in vivo. These observations may have major impact in the identification of immune biomarkers of disease status and correlates of protection

    Serum biomarker profile including CCL1, CXCL10, VEGF, and adenosine deaminase activity distinguishes active from remotely acquired latent tuberculosis

    Get PDF
    IntroductionThere is an urgent medical need to differentiate active tuberculosis (ATB) from latent tuberculosis infection (LTBI) and prevent undertreatment and overtreatment. The aim of this study was to identify biomarker profiles that may support the differentiation between ATB and LTBI and to validate these signatures.Materials and MethodsThe discovery cohort included adult individuals classified in four groups: ATB (n = 20), LTBI without prophylaxis (untreated LTBI; n = 20), LTBI after completion of prophylaxis (treated LTBI; n = 20), and healthy controls (HC; n = 20). Their sera were analyzed for 40 cytokines/chemokines and activity of adenosine deaminase (ADA) isozymes. A prediction model was designed to differentiate ATB from untreated LTBI using sparse partial least squares (sPLS) and logistic regression analyses. Serum samples of two independent cohorts (national and international) were used for validation.ResultssPLS regression analyses identified C-C motif chemokine ligand 1 (CCL1), C-reactive protein (CRP), C-X-C motif chemokine ligand 10 (CXCL10), and vascular endothelial growth factor (VEGF) as the most discriminating biomarkers. These markers and ADA(2) activity were significantly increased in ATB compared to untreated LTBI (p ConclusionThe biomarker signature of CCL1, CXCL10, VEGF, and ADA2 activity provides a promising tool for differentiating patients with ATB from non-treated LTBI individuals.Immunogenetics and cellular immunology of bacterial infectious disease
    corecore