33 research outputs found

    Development of nuclear emulsions operating in vacuum for the AEgIS experiment

    Get PDF
    For the first time the AEgIS (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) experiment will measure the Earth\u2019s local gravitational acceleration g on antimatter through the evaluation of the vertical displacement of an antihydrogen horizontal beam. This will be a model independent test of the Weak Equivalence Principle at the base of the general relativity. The initial goal of a g measurement with a relative uncertainty of 1% will be achieved with less than 1000 detected antihydrogens, provided that their vertical position could be determined with a precision of a few micrometers. An emulsion based detector is very suitable for this purpose featuring an intrinsic sub-micrometric spatial resolution. Nevertheless, the AEgIS experiment re- quires unprecedented operational conditions for this type of detector, namely vacuum environment and very low temperature. An intense R&D activity is presently going on to optimize the detector for the AEgIS experimental requirements with rather encouraging results

    Elliptic flow of identified hadrons in Pb-Pb collisions at 1asNN = 2.76 TeV

    Get PDF
    The elliptic flow coefficient (v2) of identified particles in Pb-Pb collisions at 1asNN = 2.76 TeV was measured with the ALICE detector at the Large Hadron Collider (LHC). The results were obtained with the Scalar Product method, a two-particle corre- lation technique, using a pseudo-rapidity gap of | 06\u3b7| > 0.9 between the identified hadron under study and the reference particles. The v2 is reported for \u3c0\ub1, K\ub1, K0S, p+p, \u3c6, \u39b+\u39b, \u39e 12+\u39e+ and \u3a9 12+\u3a9+ in several collision centralities. In the low transverse momentum (pT) region, pT 3 GeV/c

    Evolution of the longitudinal and azimuthal structure of the near-side jet peak in Pb-Pb collisions at 1asNN = 2.76 TeV

    Get PDF
    In two-particle angular correlation measurements, jets give rise to a near-side peak, formed by particles associated to a higher-pT trigger particle. Measurements of these correlations as a function of pseudorapidity ( \u3b7) and azimuthal ( \u3c6) differences are used to extract the centrality and pT dependence of the shape of the near-side peak in the pT range 1 < pT < 8 GeV/c in Pb-Pb and pp collisions at 1asNN = 2.76 TeV. A combined fit of the near-side peak and long-range correlations is applied to the data and the peak shape is quantified by the variance of the distributions. While the width of the peak in the \u3c6 direction is almost independent of centrality, a significant broadening in the \u3b7 direction is found from peripheral to central collisions. This feature is prominent for the low-pT region and vanishes above 4 GeV/c. The widths measured in peripheral collisions are equal to those in pp collisions in the \u3c6 direction and above 3 GeV/c in the \u3b7 direction. Furthermore, for the 10% most central collisions and 1 < pT,assoc < 2 GeV/c, 1 < pT,trig < 3 GeV/c, a departure from a Gaussian shape is found: a depletion develops around the center of the peak. The results are compared to A Multi-Phase Transport (AMPT) model simulation as well as other theoretical calculations indicating that the broadening and the development of the depletion are connected to the strength of radial and longitudinal flow

    Centrality dependence of inclusive J/\u3c8 production in p-Pb collisions at 1asNN = 5.02 TeV

    Get PDF
    We present a measurement of inclusive J/\u3c8 production in p-Pb collisions at 1asNN = 5.02TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. The measurement is performed with the ALICE detector down to zero transverse momentum, pT, in the backward ( 124.46 < ycms < 122.96) and forward (2.03 < ycms < 3.53) rapidity intervals in the dimuon decay channel and in the mid-rapidity region ( 121.37 < ycms < 0.43) in the dielectron decay channel. The backward and forward rapidity intervals correspond to the Pb-going and p-going direction, respectively. The pT-differential J/\u3c8 production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average pT and pT2 values. The nuclear modification factor is presented as a function of centrality for the three rapidity intervals, and as a function of pT for several centrality classes at backward and forward rapidity. At mid- and forward rapidity, the J/\u3c8 yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. The degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing pT of the J/\u3c8. At backward rapidity, the nuclear modification factor is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions

    Centrality dependence of high-pT D meson suppression in Pb-Pb collisions at 1asNN = 2.76 TeV

    Get PDF
    The nuclear modification factor, RAA, of the prompt charmed mesons D0, D+ and D 17+, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass energy 1asNN = 2.76 TeV in two transverse momentum intervals, 5 < pT < 8GeV/c and 8 < pT < 16GeV/c, and in six collision centrality classes. The RAA shows a maximum suppression of a factor of 5\u20136 in the 10% most central collisions. The suppression and its centrality dependence are compatible within uncertainties with those of charged pions. A comparison with the RAA of non-prompt J/\u3c8 from B meson decays, measured by the CMS Collaboration, hints at a larger suppression of D mesons in the most central collisions

    Robinia pseudoacacia dominated vegetation types of Southern Europe: species composition, history, distribution and management

    No full text
    Knowledge of the species composition of invaded vegetation helps to evaluate an ecological impact of aliens and design an optimal management strategy. We link a new vegetation analysis of a large dataset to the invasion history, ecology and management of Robinia pseudoacacia stands across Southern Europe and provide a map illustrating Robinia distribution. Finally, we compare detected relationships with Central Europe. We show that regional differences in Robinia invasion, distribution, habitats and management are driven both by local natural conditions (climate and soil properties, low competitive ability with native trees) and socioeconomic factors (traditional land-use). Based on the classification of 467 phytosociological relev\ue9s we distinguished five broad vegetation types reflecting an oceanity-continentality gradient. The stands were heterogeneous and included 824 taxa, with only 5.8% occurring in more than 10% of samples, representing mainly hemerobic generalists of mesophilous, nutrient-rich and semi-shady habitats. The most common were dry ruderal stands invading human-made habitats. Among native communities, disturbed mesic and alluvial forests were often invaded throughout the area, while dry forests and scrub dominated in Balkan countries. Continuous, long-term and large-scale cultivation represent a crucial factor driving Robinia invasions in natural habitats. Its invasion should be mitigated by suitable management taking into account adjacent habitats and changing cultivation practices to select for native species. Robinia invasion has a comparable pattern between Central and Southern Europe, but there is a substantial difference in management and utilization causing heterogeneity of many South-European stands

    The role of the vegetation structure, primary productivity and senescence derived from airborne LiDAR and hyperspectral data for birds diversity and rarity on a restored site

    No full text
    Management of restored areas requires ecologically meaningful spatial data providing objective measures of restoration success. Understanding relationships between species diversity on the one hand and habitat het\uad erogeneity and productivity on the other can help establish such measures and prioritize restoration manage\uad ment. We used airborne LiDAR and hyperspectral data to derive characteristics of vegetation structure, primary productivity and senescent vegetation (i.e. old dead vegetation) for prediction of richness and rarity of bird communities colonizing newly available habitats restored after coal mining. In addition, we analysed, which type of restoration (i.e. agricultural, forest, or spontaneous succession) results in more favourable conditions. The boosted regression trees explained 52% and 12% of deviance of overall species richness and rarity, respectively. We found that the overall species richness was strongly affected by the variance in vegetation structure, while the rarity was also affected by the presence of senescent vegetation. The relative importance of variables differed between the richness and rarity. The shrub cover had a strong positive effect on both, while the tree cover had a strong positive effect on species richness. The herbaceous cover and presence of senescent vegetation had pos\uad itive effects on species rarity. This study, therefore, supports the necessity to create a mosaic of habitats with heterogeneous vertical structure including all layers of vegetation and highlights the importance of senescent vegetation. Combination of forests restoration with sites left to spontaneous succession appears to be the best strategy to increase both bird species richness and rarity in newly restored sites after coal mining

    Detection of low energy antiproton annihilations in a segmented silicon detector

    Get PDF
    The goal of the AEbar gIS experiment at the Antiproton Decelerator (AD) at CERN, is to measure directly the Earth's gravitational acceleration on antimatter by measuring the free fall of a pulsed, cold antihydrogen beam. The final position of the falling antihydrogen will be detected by a position sensitive detector. This detector will consist of an active silicon part, where the annihilations take place, followed by an emulsion part. Together, they allow to achieve 1% precision on the measurement of bar g with about 600 reconstructed and time tagged annihilations. We present here the prospects for the development of the AEbar gIS silicon position sentive detector and the results from the first beam tests on a monolithic silicon pixel sensor, along with a comparison to Monte Carlo simulations

    Measuring GBAR with emulsion detector

    Get PDF
    The motivation of the AEgIS experiment is to test the universality of free fall with antimatter. The goal is to reach a relative uncertainty of 1% for the measurement of the earth’s gravitational acceleration g on an antihydrogen beam. High vertex position resolution is required for a position detector. An emulsion based detector can measure the annihilation vertex of antihydrogen atoms with a resolution of 1-2 μm, which if realized in the actual experiment will enable a 1% measurement of g with less than 1000 H atoms. Developments and achievements on emulsion detectors for the AEgIS experiment are presented here

    Measuring with , progress and perspectives

    Get PDF
    Aegis experiment's main goal is to measure the local gravitational acceleration of antihydrogen g and thus perform a direct test of the weak equivalence principle with antimatter. In the first phase of the experiment the aim is to measure g with 1% relative precision. This paper presents the antihydrogen production method and a description of some components of the experiment, which are necessary for the gravity measurement. Current status of the Aegis experimental apparatus is presented and recent commissioning results with antiprotons are outlined. In conclusion we discuss the short-term goals of the Aegis collaboration that will pave the way for the first gravity measurement in the near future
    corecore