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ABSTRACT. For the first time the AEgIS (Antihydrogen Experiment: Gtgvinterferometry,
Spectroscopy) experiment will measure the Earth’s locabitational acceleratiog on antimatter
through the evaluation of the vertical displacement of aihgdrogen horizontal beam. This will
be a model independent test of the Weak Equivalence Prinaipthe base of the general relativity.
The initial goal of ag measurement with a relative uncertainty of 1% will be achiewith less
than 1000 detected antihydrogens, provided that theiica¢nposition could be determined with
a precision of a few micrometers. An emulsion based detésteery suitable for this purpose
featuring an intrinsic sub-micrometric spatial resolntidNevertheless, the AEgIS experiment re-
quires unprecedented operational conditions for this bffetector, namely vacuum environment
and very low temperature. An intense R&D activity is prebegbing on to optimize the detector
for the AEgIS experimental requirements with rather enaging results.
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1 Introduction

In the last decade cold antihydrogen atoms were createdrapped for a time long enough to
allow for their study L, 2]. This paved the way for the AEgIS experiment at the CERN pation
Decelerator (AD) that was proposed to directly measure #r¢hEs local gravitational acceleration
g on antihydrogen3]. Several theoretical arguments suggest that the grebrittinteraction of
matter and antimatter should be identic&l §]. Nevertheless, the gravity acceleration has never
been measured on antimatter. One of the first goal of AEgIBeis to test the Weak Equivalence
Principle, observing the vertical displacement of an hwrtal H beam in the gravitational field by
measuring the annihilation point of thé atoms at the end of their trajectory. The fundamental
steps for performing the experiment require the produatiboold (100 mK) antihydrogen based
on the charge exchange reaction between cold antiprotahgasitronium in the Rydberg state.
The produced Rydberg antihydrogen atoms have then to béeseatesl by means of an inhomo-
geneous electric field to form a beam. Finaliycan be determined through a two-grating moiré
deflectometer coupled with a position-sensitive detedtoparticular, this detector has to feature
a position resolution of a few micrometers in order to obtai precision ofAg/g of 1%, initial
purpose of AEgIS, with less than 1000 detected antihydragems. An emulsion based detec-
tor [6], with its intrinsic spatial resolution at the sub-micramie level, has then been chosen to
measure the arrival point of the antihydrogen atoms aftevendlight path. However, emulsions
have never been used in vacuum and at very low temperatui€) (@3 required by the AEgIS
experiment. For this reason, an intense R&D programme ha®dtto study the mechanical stress
of the emulsion detector in this new conditions, its backgband its sensitivity7]. First tests in
the AEgIS beam line at CERN were carried out in December 20b2n emulsion detectors were
exposed to a- 100 keV antiproton beang].

2 Overview of the AEgI S experiment

The AEQIS experiment needs to produce cold antihydrogemstp- 100 mK). They will be
formed through the charge exchange reactsh+ p — H* + e~ [9] between cold antiprotons
and positronium. In particular, antiprotons coming from A captured and trapped ina 5T
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Figurel. Left: sketch of the AEQIS apparatus. Right: the gravity susament module.

magnet (4 K) where a cloud ef 10° electrons is used for their cooling, while positrons from a
22Na source are accelerated towards a nano-porous targetnottie positronium, successively
excited to a Rydberg stat®$) by two laser beams. After the charged exchange reactiomein t
p-trap in a 1 T field H-atoms, in the Rydberg state too, will have an average spesdr/s, ac-
cording to the Maxwell-Boltzmann distribution. An electfield is then applied along the beam
axis to accelerate the-atoms to a velocity of about 400 m/s. A moiré deflectometensisting of
two gratings at a given distance L, is then used to selectritygagation directions of the originally
diverging antiatom beam. Downstream the gratings the atmmslistributed in a shadow image
forming a set of fringes which are eventually shifted in ttetB's gravitational field by\y = gr2,
wherert is the time of flight between the two gratings. The positions#éve detector will measure
the shift of the antihydrogens detecting the position ofrthanihilation taking place in a thin sil-
icon foil placed in front of the detector to separate the higbuum region of the apparatus to the
ordinary vacuum region. An associated time of flight deteb#s to provide the time information
corresponding to each annihilation event in order to fitgivalue from the above mentioned rela-
tion Ay = gr2. A sketch of the AEgIS apparatus is shown in figliyevhere an enlarged display of
the gravity measurement module is also reported.

3 Emulsion based position detector

Emulsion films went through many successful achievementgegle detectors leading physi-
cists to fundamental discoverie6][ They consist of silver bromide crystals (AgBr) uniformly
distributed in a gel where a latent track is formed after a&rossed by an ionising particle. The
latent track become visible at the optical microscope aftehemical development process pro-
ducing a sequence of silver grains along the particle trdokig for its full three-dimensional
reconstruction even for very thin emulsion layers. Themedevelopment of fast automated scan-
ning systems for the track analysi] has overcome the problem of the time consuming manual
scanning procedure, that represented the main limitinpifae the use of such a detector foster-
ing a rebirth of their application in particle and nucleaygias. Their excellent intrinsic spatial
resolution of about 0.050m can be exploited in the AEgQIS experiment to reach the reduifo
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Figure 2. Simulated relative precision on tlgemeasurement as a function of the number of the detected
annihilations for various detector vertex resolutionse §blid line indicates thAg/g = 1%.
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Figure 3. Schematic of the position sensitive detector in AEgQIS.

precision omg/g, as results from Monte Carlo simulation studies perforneeeviluate the rela-
tive precision org as a function of the detector resolution. An unbinned maxintikelihood was
used to evaluatAg/g as a function of the number of detected annihilations folouer vertex res-
olutions B]. The simulation results are reported in fig@re/here it can be seen that reconstructing
the annihilation vertex of the antihydrogen atom at a lefeh few micrometers can assure the

required precision on thg measurement.

On this basis the proposed position detector for AEQIS isotiegh in figure3: a thin foil of sil-
icon, where the annihilation events will take place, is ek separate the high vacuum region of
the experiment from the ordinary vacuum region where thelgiorudetector will be located. Two
planes of scintillating fibers will then be placed behind éneulsions to measure the time of flight
for every annihilation event. The detector, and in paréicuhe emulsions, will have to operate
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Figure 4. Left: microscope view of an antiproton annihilation. Rigimpact parameter distribution of
interaction products.

in vacuum and at temperatures between 77 K and room temperada cope with these unusual
environmental conditions one needs to: i) improve the sgitgiof the detector developing a new
emulsion gel; ii) study the performances of the emulsioeder in vacuum; iii) study the perfor-
mances of the emulsion detector as a function of the temperat) develop a new algorithm for a
fast 4t steradian track reconstruction. Following several testfopmed at the Laboratory for High
Energy Physics (LHEP) of the University of Bern, princigallevoted to assess the emulsion sta-
bility in vacuum [7], the emulsion detector commissioning in vacuum was pevéalin December
2012 at the AD at CERN with a 100 keV antiproton beam. The emulsions were installed in the
AEgIS beam line in a six-way cross mounted at the foreseeitigo®f the deflectometer. After
the exposures, the emulsion foils were developed in a dark @t CERN, and then analised with
the automatic microscope facility of the University of Ber@ne of the thousands of antiproton
annihilations successfully reconstructed is shown in &guin the same figure the impact param-
eter distribution for the annihilation events is also repdrfor those taking place directly in the
emulsions and for those taking place in a(2a thick stainless steel foil (simulating the window
needed to separate in the final experiment the deflectometarthe emulsion detector) covering
the emulsions. A resolution ef 1 um was achieved, confirming the feasibility and the advarstage
of the employment of the emulsion detector in AEg8E [

The multiplicity distributions of minimum and heavily iaring particles in antiproton annihi-
lations were also studied for different materials. Firsutes are providing interesting indications
for the discrimination among nuclear models embedded IGBANT4 simulation packagel()]
and will be the subject of a forthcoming publication.

The study of the influence of the temperature on the backgrama sensitivity of the emul-
sions is presently underway at LHEP. A test facility has bsstrup for irradiating the films with
a (3-ray source in such a way that the sensitivity will be measunevacuum and at different
temperature. The apparatus is shown in fighirdn parallel, a software development has been
initiated by members of the LHEP for the automatic track saam of the emulsion platedl]].
In fact, the microscope scanning facility of LHEP (figuskis well equipped and tuned for the
research activity on neutrino oscillation experiment elkterized by a forward boosted event
topology.
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Figure 6. Emulsion scanning facility at LHEP (University of Bern).

However, this topology substantially differs from that bétantihydrogen annihilation events
to be detected in AEgIS. In the latter case a track recorngtrualgorithm over a # solid angle is
needed implying about a factor 100 larger data processitigput loosing the present processing
speed of about 10 chemulsion surface per hour. To meet these requirements, araekrecon-
struction based on the GPU (Graphic Processing Unit) tdoggacombined with a multithread
programming has been developed and the processing of 3Bemdetector data is now about 60
times faster. As a consequence 1¥@mulsion surface can be scanned per hour by GPUs with an
excellent tracking performancé].

4 Conclusions

The AEgIS experiment aims at measuring for the first time thetEs local gravity acceleration
on antimatter, namely on antihydrogen atoms produced dEhaccelerator at CERN. The initial
goal is to determing with a relative precision of 1%. The results of the testsqrentd in Decem-



ber 2012 at the AD at CERN with an antiproton beam demonsithtg emulsion detectors can be
successfully used to measure the annihilation verticestiffiyarogen atoms in vacuum with very
high precision (1-2tm), hence allowing to reach the above-mentioned goal wih than 1000
antihydrogen reconstructed annihilation events. The simbehavior at low temperature remains
to be assessed and tests are presently under way to opthmeiperformances of the detector.
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