240 research outputs found

    Lack of neuroinflammation in the HIV-1 transgenic rat: An [18 F]-DPA714 PET imaging study

    Get PDF
    BACKGROUND: HIV-associated neuroinflammation is believed to be a major contributing factor in the development of HIV-associated neurocognitive disorders (HAND). In this study, we used micropositron emission tomography (PET) imaging to quantify neuroinflammation in HIV-1 transgenic rat (Tg), a small animal model of HIV, known to develop neurological and behavioral problems. METHODS: Dynamic [(18)F]DPA-714 PET imaging was performed in Tg and age-matched wild-type (WT) rats in three age groups: 3-, 9-, and 16-month-old animals. As a positive control for neuroinflammation, we performed unilateral intrastriatal injection of quinolinic acid (QA) in a separate group of WT rats. To confirm our findings, we performed multiplex immunofluorescent staining for Iba1 and we measured cytokine/chemokine levels in brain lysates of Tg and WT rats at different ages. RESULTS: [(18)F]DPA-714 uptake in HIV-1 Tg rat brains was generally higher than in age-matched WT rats but this was not statistically significant in any age group. [(18)F]DPA-714 uptake in the QA-lesioned rats was significantly higher ipsilateral to the lesion compared to contralateral side indicating neuroinflammatory changes. Iba1 immunofluorescence showed no significant differences in microglial activation between the Tg and WT rats, while the QA-lesioned rats showed significant activation. Finally, cytokine/chemokine levels in brain lysates of the Tg rats and WT rats were not significantly different. CONCLUSION: Microglial activation might not be the primary mechanism for neuropathology in the HIV-1 Tg rats. Although [(18)F]DPA-714 is a good biomarker of neuroinflammation, it cannot be reliably used as an in vivo biomarker of neurodegeneration in the HIV-1 Tg rat. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-015-0390-9) contains supplementary material, which is available to authorized users

    Changes in matrix phosphorylation during bovine dentin development

    Get PDF
    Phosphorylation of the organic matrix proteins of dentin is important for the initiation of mineralization, but its relevance in later mineralization stages is controversial. The objective of this study was to analyze changes in the total matrix phosphate content during dentin development and to identify their origin. Amino acid and total matrix phosphate analyses of microdissected developing mantle and circumpulpal fetal bovine dentin specimens were performed. The amino acid composition showed few changes during mantle and circumpulpal dentin maturation. However, the total matrix phosphate content showed a significant, positive correlation with tissue maturation in both mantle and circumpulpal dentin, with a two- and a three-fold increase, respectively, being observed. The data indicate that changes occur in the pattern of phosphorylation of matrix proteins during dentin maturation, which we suggest may play a functional role in later stages of tooth mineralization

    Multi-site genetic analysis of diffusion images and voxelwise heritability analysis : a pilot project of the ENIGMA–DTI working group

    Get PDF
    The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/)

    Identification of a small molecule yeast TORC1 inhibitor with a flow cytometry-based multiplex screen

    Get PDF
    TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high throughput flow cytometry multiplexed screen using five GFPtagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in an analogous manner to rapamycin. We have shown that CID 3528206 inhibited yeast cell growth, and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC50s of 150 nM and 3.9 μM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Burden of childhood-onset arthritis

    Get PDF
    Juvenile arthritis comprises a variety of chronic inflammatory diseases causing erosive arthritis in children, often progressing to disability. These children experience functional impairment due to joint and back pain, heel pain, swelling of joints and morning stiffness, contractures, pain, and anterior uveitis leading to blindness. As children who have juvenile arthritis reach adulthood, they face possible continuing disease activity, medication-associated morbidity, and life-long disability and risk for emotional and social dysfunction. In this article we will review the burden of juvenile arthritis for the patient and society and focus on the following areas: patient disability; visual outcome; other medical complications; physical activity; impact on HRQOL; emotional impact; pain and coping; ambulatory visits, hospitalizations and mortality; economic impact; burden on caregivers; transition issues; educational occupational outcomes, and sexuality

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    corecore