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RESEARCH Open Access

Lack of neuroinflammation in the HIV-1
transgenic rat: an [18F]-DPA714 PET
imaging study
Dianne E. Lee1, Xuyi Yue2, Wael G. Ibrahim1, Margaret R. Lentz1, Kristin L. Peterson1, Elaine M. Jagoda3,
Michael Kassiou4, Dragan Maric5, William C. Reid1 and Dima A. Hammoud1*

Abstract

Background: HIV-associated neuroinflammation is believed to be a major contributing factor in the development
of HIV-associated neurocognitive disorders (HAND). In this study, we used micropositron emission tomography (PET)
imaging to quantify neuroinflammation in HIV-1 transgenic rat (Tg), a small animal model of HIV, known to develop
neurological and behavioral problems.

Methods: Dynamic [18F]DPA-714 PET imaging was performed in Tg and age-matched wild-type (WT) rats in three
age groups: 3-, 9-, and 16-month-old animals. As a positive control for neuroinflammation, we performed unilateral
intrastriatal injection of quinolinic acid (QA) in a separate group of WT rats. To confirm our findings, we performed
multiplex immunofluorescent staining for Iba1 and we measured cytokine/chemokine levels in brain lysates of Tg
and WT rats at different ages.

Results: [18F]DPA-714 uptake in HIV-1 Tg rat brains was generally higher than in age-matched WT rats but this was
not statistically significant in any age group. [18F]DPA-714 uptake in the QA-lesioned rats was significantly higher
ipsilateral to the lesion compared to contralateral side indicating neuroinflammatory changes. Iba1 immunofluorescence
showed no significant differences in microglial activation between the Tg and WT rats, while the QA-lesioned rats
showed significant activation. Finally, cytokine/chemokine levels in brain lysates of the Tg rats and WT rats were not
significantly different.

Conclusion: Microglial activation might not be the primary mechanism for neuropathology in the HIV-1 Tg rats.
Although [18F]DPA-714 is a good biomarker of neuroinflammation, it cannot be reliably used as an in vivo biomarker of
neurodegeneration in the HIV-1 Tg rat.

Keywords: HIV, Transgenic rat, Positron emission tomography, Neuroinflammation

Background
In the developed world where antiretroviral therapy
(ART) is readily available, HIV/AIDS has been trans-
formed from a once fatal to a chronic manageable
disease, with markedly decreased mortality and mor-
bidity. Along the same lines, the incidence of severe
neurocognitive dysfunction decreased significantly [1].
The more subtle forms of neurocognitive dysfunction

however became more prevalent, leading to gradual,
but ultimately significant functional deterioration of
otherwise virologically controlled HIV+ patients [2].
Among various factors, the contribution of neuroinflam-

mation/microglial activation to neuronal damage in HIV is
assumed to play a major role [3] based on multiple cell cul-
ture studies [4–7] as well as direct histological evaluation of
brain tissues from untreated HIV or simian immunodefi-
ciency virus-infected animals [8]. The hallmark of neuroin-
flammation is the activation of naturally quiescent resident
microglial cells [9] resulting in the unregulated secretion of
multiple neurotoxins and cytotoxins, ultimately resulting in
neuronal damage leading to cell death [3, 10]. The ability to
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non-invasively monitor neuroinflammation is thus an im-
portant target in the diagnosis, prevention, and evaluation
of treatment effect in many neurological diseases including
neuro-HIV.
Imaging microglial activation as a surrogate marker for

neuroinflammation can be done through the use of spe-
cific radiolabeled ligands targeting the translocator protein
(TSPO, previously known as the peripheral benzodiazep-
ine receptor (PBR)) [3], an 18 kD outer mitochondrial
membrane receptor which is naturally expressed in small
amounts in resting microglial cells. TSPO however gets
significantly upregulated during microglial activation [9].
The prototype positron emission tomography (PET)
TSPO ligand, [11C]PK11195, has been extensively used to
image neuroinflammation in a variety of neurodegenera-
tive diseases [11–16] but has long been criticized for
inherent limitations such as high non-specific binding and
high lipophilicity [17–20]. Newer higher affinity ligands
for TSPO, such as DPA-713 [21], PBR-28 [22], CLINDE
[23, 24], and DAA [25], among others, have been devel-
oped as a result.
In this study, we set out to validate one of the newly de-

signed TSPO ligands, [18F]DPA-714, an 18F-labeled pyrazo-
lopyrimidine, [19, 20, 26], as surrogate imaging biomarker
of microglial activation (neuroinflammation), in vivo, in the
brains of HIV-1 transgenic rats (Tg) compared to age-
matched controls. We wanted to test the hypothesis that
the Tg rat brain shows microglial activation which would
potentially allow the use of [18F]DPA-714 PET in this ani-
mal model as a biomarker for the effectiveness of various
neuroprotective/anti-inflammatory therapies.

Methods
Animals
Experiments were carried out in male Tg (F344/Hsd) in
three different age groups (3, 9, and 16 month-old) and
male age-matched wild-type control rats (F344) (WT)
purchased from Harlan Inc. (Indianapolis, IN). The total
sample of animals used for PET imaging, blood metabolism
experiments, and cytokine/chemokine measurements in-
cluded 28 Tg and 27 WT rats. All rats were housed in a
temperate-controlled environment with a 12-h light/dark
cycle. The animals were allowed free access to food and
water. All procedures were conducted during the light
cycle. The rats were acclimated to careful handling prior to
testing to minimize stress. Animal care and all experimental
procedures were approved by the Institutional Animal Care
and Use Committee (ACUC) of the National Institutes of
Health (NIH).

QA surgical procedures
Three WT rats weighing 210 ± 114 g were used for intras-
triatal injection of quinolinic acid (QA). The animals were

anesthetized with 1 mg/kg ketamine and xylazine (10:1)
cocktail (Sigma) and then placed in a stereotaxic appar-
atus (Stoelting Wood Dale, IL, USA). Unilateral stereo-
taxic injections of 150 nmol in 1 μl of QA (Sigma;
dissolved in 0.1 M phosphate-buffered saline (PBS), pH
7.4) in the right striatum were made over 5 min using a
10 μl Hamilton syringe fitted with a micropump (Stoelting
Wood Dale, IL, USA). The syringe was fitted with a 26-
gauge needle at the following coordinates according to
Paxinos and Watson (1998): anteroposterior (AP) +1 mm,
mediolateral (ML) −3.0 mm, dorsoventral (DV) −4.5 mm,
from the bregma. The injection syringe was left in place
for an additional 5 min to allow the QA to diffuse from
the needle tip and avoid backflow. After removing the
needle, the skin was sutured and the animals were allowed
to recover before being returned to their cages. The ani-
mals were given buprenorphine (0.03 mg/kg) intramuscu-
larly and examined daily until PET imaging. PET imaging
studies were conducted either 7 days post-op (n = 1) or
3 days post-op (n = 2). All animal procedures were per-
formed in accordance with the NIH ACUC guidelines.

Radiochemistry
Automated syntheses of [18F]DPA-714 were carried out
using a slightly modified TRACERLab FX-FN module
(GE Medical Systems, Germany). In brief, aqueous
[18F]fluoride anions were sucked through the Chroma-
fix® under vacuum. The trapped 18F-fluoride was eluted
from the cartridge and transferred to the reaction vessel
with an eluent solution containing K2CO3, acetonitrile,
and Kryptofix-222. The reaction mixture was evaporated
to dryness after addition. Tosylate substrate was then
dissolved in dimethyl sulfoxide, and the mixture was
transferred to the dry 18F-labeled KF-K222 complex and
allowed to react at 165 °C for 5 min. On completion, the
reaction mixture was diluted with semi-preparative
HPLC solvent and passed through a Sep-Pak® light
Alumina N cartridge (Waters Corporation, Milford,
MA). The reaction vessel was rinsed with HPLC solvent
and passed through the Sep-Pak® Alumina N cartridge
by helium pressure. The combined crude solution col-
lected in the collection flask was transferred to the
HPLC injection loop and injected into a Phenomenex
Luna 5 μ C18 semi-preparative reversed-phase HPLC
column (250 × 10 mm), with a mobile phase of H2O and
acetonitrile (55/45, v/v) at a flow rate of 4.0 ml/min. The
retention time (tR) of [18F]DPA-714 was determined to
be 19 min. The radioactive fraction corresponding to
[18F]DPA-714 was collected into a dilution flask. The
final formulation of the tracer was performed automatic-
ally using a Sep-Pak® Plus C18-based system. The diluted
fraction collected from the dilution flask was passed
through the C18 cartridge to fix the tracer. The cartridge
was washed with deionized water (10 ml), and the purified
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tracer was finally recovered by elution of the C18 cartridge
with the ethanol (1.5 ml) from the reservoir. Yield and
specific activity were determined at this stage (25 ± 3 %,
specific activity 41–107 GBq/μmol, n > 10). The excess
ethanol was removed through rotary evaporation and
concentrated to 250–350 μl. The tracer was delivered
and diluted with PBS for final formulation and animal
administration.

[18F]DPA-714 blood metabolism
The Tg (n = 3, 10 ± 1 months) and age-matched WT rats
(n = 3, 10 ± 0.5 months) were anesthetized with 2–2.5 %
isoflurane air/oxygen mixture and injected with 1–2 mCi
(37–74 MBq) of [18F]DPA-714 (1.65 ± 0.43 mCi; 61.05 ±
15.91 MBq). Aliquots of blood (400 μl) were taken from
each animal at 5, 15, 30, and 60 min post-injection and
centrifuged at 17,000×g at 4 °C for 4 min. One hundred
microliter of plasma was retrieved, and extraction was
performed using 200-μl acetonitrile. The mixture was
vortexed for 30 s and centrifuged at 17,000×g, 4 °C for 4
min. The supernatant was removed and 25 μl from each
sample was applied on silica gel thin layer chromatog-
raphy (TLC) plates. A mixture of chloroform (90%),
methanol (9%), and ammonium hydroxide (1%) was used
as the eluent. The dried TLC plates were placed overnight
on a phosphorimaging plate with a pixel size of 25 μm
(Fuji BAS-SR2025, Fujifilm, Japan). After exposure, the
plates were scanned using a Fuji FLA-5100 and the data
was analyzed using Image Gauge (Fujifilm, Japan). The
radioactivity of the remaining plasma and pellets was
determined by γ-counting (Perkin Elmer 2480 Wizard3)

and used to calculate the percent parent uptake of the
plasma, corrected for metabolites (differential uptake
ratio, DUR =% injected dose normalized to animal weight
and plasma volume). Finally, the percentages of unchanged
[18F]DPA-714 in plasma as a function of time were fitted
to an exponential decay equation (Fig. 1).

[18F]DPA-714 PET
The 3-month-old group consisted of four Tg (237 ± 46 g)
and four age-matched WT rats (263 ± 27 g). The 9-month-
old group consisted of five Tg (344 ± 36 g) and five WT rats
(410 ± 41 g). The 16-month-old group consisted of six Tg
(392 ± 25 g) and three WT rats (464 ± 11 g).
Two to three rodents were scanned per day, and the

order of scanning was counterbalanced: one Tg rat and
one WT rat, in alternate order. The animals were anes-
thetized with 2–2.5 % isoflurane air/oxygen mixture.
The intra-subject variability of the depth of anesthesia
was monitored by measuring respiratory frequency peri-
odically during the scan. The PET experiments were
performed on a Bio PET/CT tomograph (Bioscan Inc.,
Washington, DC) with an axial field of view of 4.8 and
6.7 cm in diameter. Time coincidence window was set
to 10 ns with an energy window of 250–700 keV. The
lateral tail vein was cannulated for injection of radio-
tracer, and the cannula was then connected to a heparin
lock and secured in place with medical tape. The animal
was positioned prone with the head placed symmetric-
ally in the center field of view (FOV) on the thermo-
statically heated bed supplied by the manufacturer
(Bioscan Inc., Washington, DC).

Fig. 1 [18F]DPA-714 plasma metabolism in WT and Tg 10-month-old rats over 60 min. Blood samples were collected at four time points per animal.
The Tg (t½= 23.10 min) and WT rats (t½= 26.66 min) had similar patterns of metabolism. DUR differential uptake ratio = % injected dose normalized to
animal weight and plasma volume)
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[18F]DPA-714 injection of 1.66 ± 0.22 mCi (61.4 ±
8.1 MBq; 2.0 ± 0.9 nmol/rat) was then administered as a
bolus injection (30 s) into the indwelling intravenous
catheter followed by a 300-μl saline flush (maximum
volume of injection = 600 μl). PET emission data was ac-
quired for 60 min in list mode and then reframed into a
dynamic sequence of 20 frames (6 × 20, 3 × 60, 11 × 300).
The resultant emission Sinogram for each frame were
then corrected for attenuation, scatter, 18F decay, ran-
doms, and dead time. Dynamic images were recon-
structed using OSEM-2D algorithm into 175 × 175 × 61
slices with a voxel size of 0.39 × 0.39 × 0.78 mm. The
reconstructed images were co-registered to a template
MR in stereotaxic space using a rigid body transform-
ation model as previously described [27]. Time-activity
curves were generated for volumes of interest (VOIs)
that were drawn manually on the template MR image
guided by an anatomical atlas of the rodent brain [28].
The VOI positions were evaluated by displaying the corre-
sponding VOI on the co-registered PET images. Image
analyses were performed using PMOD 3.4 kinetic modeling
tool (PMOD Technologies Ltd., Zurich, Switzerland).
Regional [18F]DPA-714 uptake was quantified as standard-
ized uptake value equivalent to percentage of injected dose
per cubic centimeter after correction for body weight
(SUVc =% ID kg/cm3). The SUVs were calculated from the
imaging frames obtained between 40 and 60 min after
injection. Those frames were assumed to reflect “pseudo
equilibrium” status since they had the lowest rate of change
in the concentration activity curve (<5 %/h) [29]. The body
weight was adjusted according to Kleiber laws [30] as previ-
ously described [31] to account for weight differences be-
tween our adult Tg and adult WT rat. For the QA injection
group, we calculated the ratio of uptake in the ipsilateral
striatum (site of injection) and cortex (needle track) to the
contralateral striatum and cortex (reference region).

Immunofluorescence
Tissue preparation
The Tg rats (n = 14) and WT rats (n = 12), ranging in
age from 1 to 10 months, were first anesthetized with
isoflurane (3 % with 700 cc/min O2). This was followed
by transcardial perfusion using 100 ml of normal saline
(pH = 7.4) and 350 ml of freshly prepared and filtered
(0.45-μm filter) 4 % paraformaldehyde (pH 7.4). The
brains were removed and post-fixed overnight in 4 %
paraformaldehyde at 4 °C followed by three 1-h washes
in normal saline at 4 °C. The brains were next cryopro-
tected in 10 % sucrose and stored at 4 °C until they sank
in the solution; they were subsequently placed in 20 %
and then 30 % sucrose until they sank again in each
solution. The brains were then embedded in optimal
cutting temperature compound (OCT, Tissue-Tek®), and
10-μm-thick coronal serial sections were obtained. The

striatal sections (bregma 0.48 to 0.12 mm) were then
selected for immunofluorescent staining. Immunolabel-
ing protocols were applied to identify the microglial phe-
notypes in fresh frozen brain slices using rabbit IgG
anti-Iba1 (Wako Industries, cat# 019-19741) to identify
microglia/macrophages. The above primary immunore-
action was visualized using appropriate fluorophore-
conjugated (Alexa Fluor dye) secondary antibodies.
The cell nuclei were counterstained using 1 ug/ml
DAPI to facilitate cell counting. All fluorescence sig-
nals were imaged using an Axio Imager.Z2 upright
scanning wide-field fluorescence microscope (Zeiss)
equipped with an Orca Flash 4.0 high-resolution
sCMOS camera (Hamamatsu), 200W X-cite 200DC
broadband light source (Lumen Dynamics), and stand-
ard DAPI and Alexa Fluor filter sets (Semrock). After
imaging, the image datasets were processed for image
stitching and illumination correction and the images
were imported into Adobe Photoshop CS6 to produce
pseudo-colored composites.

Quantification
Quantification of Iba1 immunofluorescent staining was
performed using FIJI image processing package, based
on ImageJ (NIH, Bethesda, MD). The locations of the
selected striatal, hippocampal, and cortical ROIs were
identical between all the animals. The RGB bitmap im-
ages were first converted to 8-bit grayscale, and the
threshold was adjusted to include only cells of interest
and eliminate the background. This was followed by
counting using the image-based tool for counting nuclei
plug-in (ITCN). All images were processed using the same
analysis parameters. The Iba1 cell density (cells/mm2) was
calculated from the total number of positive cells divided
by the total area.

Cytokine/chemokine level measurements in Tg and WT
animal brain lysates
Brain lysate preparation
Cytokine/chemokine levels were measured in brain
lysate solutions from two age groups, 3 month-old (five
Tg and five WT) and 9 month-old (five Tg and four
WT). Before sacrifice, the animals were perfused with
normal saline and then were decapitated. Their brains
were excised, placed into a brain matrix (World Preci-
sion Instruments, Sarasota, FL), cut into coronal section
(3 mm each) and immediately frozen on dry ice then
stored in −80 °c. For total protein extraction, 100-mg
brain tissue sections were homogenized in 2-ml tissue ex-
traction buffer (Novateinbio, Woburn, MA) containing
protease inhibitors (Sigma, St. Louis, MO) at 1:10 dilution.
After centrifugation at 19,000×g for 20 min at 4 °C, the
supernatant was collected and stored in −80 °C until the
assay was performed. Total protein concentration from
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the supernatant was determined using BCA protein assay
kit (Pierce, Rockford, IL, USA).
Tissue samples from the striatal and hippocampal

areas were processed for each animal, and the samples
were run in triplicates. Additional tissue samples from
the cerebellum were also processed and run in dupli-
cates. Cytokine/chemokine levels of IL-1α, IL-1β, IL-2,
IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-13, IL-17, IL-18,
EPO, G-CSF, GM-CSF, M-CSF, GRO/KC, MIP1α,
MIP3α, RANTES, IFN-γ, VEGF, TNF-α, and MCP-1
were then determined using a Bio-Plex Pro™ Rat Cytokine
24-plex Assay (Bio-Rad, Hercules, CA, USA) according to
the manufacturer’s instructions. Concentrations of cyto-
kine/chemokines were read on the Bio-Plex 200 System
(Bio-Rad, Hercules, CA, USA).

Statistical analysis
All data are represented as mean ± SD. Statistical signifi-
cance was determined using GraphPad InStat statistical
software (version 3.0, San Diego, CA, USA). For the PET
scans and immunofluorescent Iba1 cell density values,
the differences were compared using two-sample Stu-
dent’s t tests.
For the cytokine/chemokine data, multiple compari-

sons were performed using non-parametric ANOVA
(Kruskal-Wallis) test followed by Dunn’s post hoc ana-
lysis. Simple comparisons were made using unpaired
two-tailed Student’s t test for parametric data (with
Welch correction) or Mann-Whitney U test for un-
paired non-parametric data. A p value of <0.05 was
considered significant.

Results
Animal weight
There were significant differences in body weight between
the Tg and age-matched WT rats in the 9-(p < 0.05) and
16-month-old (p < 0.01) groups; no differences in body
weight were observed in the 3-month-old group. Due to
the weight differences in the adult rats, we corrected the
animal weight using the Kleiber method in which the
metabolic activity is proportional to m0.74 with m being
the animal’s body weight (in grams) [30]. We chose this
method as a compromise between the total body weight
method of correction that could underestimate the SUV
in the brain and the lean body mass method of correction
that could overestimate the SUV in the brain. This
method has been used in another similar paper [31].

Radiochemistry
The chemical purity of our radiotracer was consist-
ently >95%. There were no significant differences in
specific activity (SA) values nor in the injected dose (ID)
of [18F]DPA-714 in the 3-month-old (SA, 1.5 ± 0.6 and
1.3 ± 0.4 Ci/μmol; ID, 1.5 ± 0.3 mCi (55.5 ± 11 MBq) and

1.7 ± 0.2 mCi (62.9 ± 7.4 MBq), respectively), 9-month-old
(SA, 2.1 ± 1.1 and 2.1 ± 0.9 Ci/μmol; ID, 1.9 ± 0.9 mCi
(70.3 ± 33.3 MBq) and 1.9 ± 1.0 mCi (70.3 ± 37 MBq), re-
spectively), or the 16-month-old Tg and age-matched WT
rats (SA, 1.4 ± 0.5 and 1.4 ± 0.6 Ci/μmol; ID. 1.7 ± 0.1 mCi
(62.9 ± 3.7 MBq) and 1.6 ± 0.1 mCi (59.2 ± 3.7 MBq), re-
spectively). In the QA-lesioned rats, the SA was 1.6 ±
0.1 Ci/μmol and ID was 1.3 ± 0.4 mCi (48.1 ± 14.8 MBq).

[18F]DPA-714 blood metabolism
No appreciable differences in blood metabolism pat-
terns were observed between the Tg and WT rats. The
parent molecule levels were similar in the Tg and WT
rats at different time points: 92.40 ± 3.24 % compared
to 95.81 ± 1.72 % at 5 min, 61.15 ± 22.49 % compared to
63.37 ± 15.52 % at 15 min, 35.74 ± 11.92 % compared to
37.14 ± 8.00 % at 30 min and 20.31 ± 4.97 % compared
to 25.79 ± 6.70 % at 60 min (Fig. 1). Our metabolism re-
sults were very similar to previously reported values in
the literature [32].

[18F]DPA-714 PET
The time-activity curves (TACs) of the 60-min acquisi-
tions were similar in shape between the Tg and WT rats
in all regions. Representative TACs derived from the
caudate nucleus region are shown in Fig. 2 and Add-
itional file 1. The radioligand was rapidly taken up in the
brain but displayed fast washout with only small activity
concentrations measured at later time points. Pseudo
equilibrium was reached at approximately 40 min after in-
jection (Fig. 2).
In all the three age groups, the Tg rats generally

showed slightly increased SUV values compared to the
age-matched WT rats; however, this was not statistically
significant in any group or any brain region (Table 1,
Fig. 3b, c). In the QA-injected rats, on the other hand,
there was a definite increase in [18F]DPA-714 binding
ipsilateral to the injection site when compared to the
contralateral side (Fig. 3a). The increased uptake was
seen in the caudate at the site of the injection as well as
along the tract of the needle in the cortex. The fold
increase ranged from 1.2 to 2 (ipsilateral versus contra-
lateral ratio).

Immunofluorescence
The Iba1 cell density values (cells/mm2) were not sig-
nificantly different between the Tg and WT rats in any
of the evaluated brain regions, which included the cor-
tex, striatum, and hippocampus (two-sample Student’s
t test, p > 0.05).

Cytokine/chemokine measurements in the brain lysates
For all the measured cytokine/chemokines in the brain
lysates, there were no significant differences in cytokine/
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chemokine concentrations between the Tg and age-
matched WT animals at any age (Fig. 4).
When we compared the general direction of change

with age between the TG and WT rats, there were no
appreciable differences with cytokine/chemokine con-
centrations generally following the same pattern of ei-
ther increase, decrease, or no change in both groups.

Discussion
The exact neuropathology leading to milder forms of
HIV-associated neurocognitive disorders (HAND) is not
fully understood. Unlike microglia and astrocytes, neu-
rons do not express CD4 and there is no direct evidence
of productively infected neurons with HIV [33, 34]. The
neurologic damage is rather thought related to persist-
ent low level of neuroinflammation [5, 35], neurotoxic
effects of viral proteins [36, 37], as well as the indirect
disruption of the supportive and neurotrophic role of
astrocytes [38] and oligodendrocytes [39]. Among those
factors, the contribution of neuroinflammation (micro-
glial activation) to neuronal damage is believed to play
a major role [8, 5, 6, 4, 7, 3]. As a result, there were
three attempts to image microglial activation in vivo in

HIV-positive (HIV+) patients using PET. All three
groups [40–42] used [11C]PK11195; however, the re-
sults were inconsistent, which is probably due to the
heterogeneity of patient populations, as far as treatment
and neurological status, as well as the limitations of
[11C]PK11195 as a radiotracer [17–20].
One way of controlling for those variables is to per-

form imaging studies in animal models. The Tg rat is a
non-infectious small animal model of HIV infection, in
which the expression of the transgene, consisting of an
HIV-1 provirus with functional deletion of gag and pol,
is regulated by the viral long terminal repeat [43]. There
is no potential for replication, but there is chronic
exposure to viral proteins, such as Tat, gp120, Vpr, and
Nef. The HIV-1 Tg rat exhibits pathologies and immune
irregularities characteristic of HIV-1 infection of humans.
As a model for HIV infection, it was found to develop
consistent neurological and behavioral deficits [44–47], in-
creased expression of microglial markers such as CD11b,
and, with some groups [48, 35, 49], but not others [50],
increased levels of multiple cytokines and chemokines. It
thus appears to be of particular importance for the evalu-
ation of neurological complications of HIV. The non-

Fig. 2 [18F]DPA-714 PET time-activity curves over 60 min derived from the caudate nucleus of a 9-month-old Tg, 9-month-old WT rat, and one
QA unilaterally lesioned rat. Error bars represent standard error of the mean at each time point

Table 1 Corrected standardized uptake values (SUVc = % ID. kg/cm3) for Tg and age-matched WT rats at three age groups

Region 3-month-old 9-month-old 16-month-old

Tg WT p value Tg WT p value Tg WT p value

Cortex 3.07 ± 0.23 2.87 ± 0.79 0.65 2.81 ± 0.71 2.32 ± 0.42 0.21 2.19 ± 0.43 1.61 ± 0.29 0.1

Caudate 2.62 ± 0.18 2.68 ± 0.87 0.90 2.60 ± 0.62 2.02 ± 0.41 0.11 2.18 ± 0.53 1.58 ± 0.22 0.11

Thalamus 2.32 ± 0.27 2.12 ± 0.45 0.47 2.51 ± 0.66 2.06 ± 0.38 0.22 1.98 ± 0.50 1.42 ± 0.14 0.11

Hippocampus 2.35 ± 0.38 2.14 ± 0.47 0.50 3.41 ± 0.60 2.54 ± 0.79 0.1 1.93 ± 0.63 1.40 ± 0.17 0.21

Cerebellum 3.40 ± 0.17 3.14 ± 0.80 0.54 3.37 ± 1.00 2.94 ± 0.62 0.42 2.60 ± 0.71 1.90 ± 0.22 0.15

Values are listed as mean SUVc ± SD for each group
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infectious nature of the model, the larger brain size allow-
ing for microPET imaging (compared to mice) and the
commercial availability of the Tg rat are additional positive
factors. In our study, we set out to validate [18F]DPA-714
as an in vivo biomarker of microglial activation in the Tg
rat so that we can ultimately use the combination of the

animal model and ligand in the evaluation of the effective-
ness of neuroprotective therapies/approaches.
[18F]DPA-714 has been useful in the study of other

animal models of neuroinflammation including encephal-
itis [18], cerebral ischemia [20, 51], epilepsy [52], excito-
toxicity [53], glioma [32, 54, 55] and other preclinical

Fig. 3 Representative coronal [18F]DPA-714 PET summed images between 40 and 60 min of acquisition in a QA-injected rat, b 9-month-old Tg, and c
9-month-old WT rat, in template MRI stereotaxic space. Increased [18F]DPA-714 uptake is seen ipsilateral to the QA injury site in a (solid black arrows).
No qualitative differences in uptake between the Tg and WT rats are seen. Areas of uptake in a, b, and c (open arrows) are due to normal [18F]DPA-714
PET uptake in the choroid plexus within the ventricular system. Intense Iba1 immunofluorescent staining (increased size and number of activated
microglia) in the QA-lesioned rat (d), with comparable staining of cells in middle-aged Tg (e) and age-matched WT (f) rats (scale bar 100 μm)
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neurodegenerative disease models. Useful neuroimaging
probes should fulfill a number of key general properties:
appropriate lipophilicity, lack of toxicity, small size with
high selectivity for the target site, and preferably lack of
radiolabeled metabolites that can cross the blood brain
barrier. With PET ligands, however, differences in cerebral
metabolism have been described in genetically engineered
small animal models and/or pathologically modified
rodents [56]. Therefore, since we are dealing with a trans-
genic animal model, we evaluated plasma [18F]DPA-714
metabolism and found no difference between the Tg and
WT rats, with similar clearance rates of the ligand from
the blood in both groups.
We chose to evaluate three different age groups

(young, middle-aged, and old) because we assumed the
older animals would demonstrate more neuroinflamma-
tion by virtue of longer exposure to viral proteins. We
also based our choice on other functional and structural
abnormalities that we previously detected in the Tg rats
at those ages and that worsened with aging [57, 58].
Using [18F]DPA-714, we found higher mean SUVc values
in the Tg rats compared to the age-matched WT rats;
however, this difference did not reach statistical signifi-
cance in any region or age group. In the unilateral QA
striatal injection model (known to induce inflammation
and increased TSPO expression [19]), on the other hand,
there was clear increased uptake in the ipsilateral stri-
atum (Fig. 3a). Immunofluorescent staining confirmed
the in vivo findings with no qualitatively appreciable
difference in Iba1 cellular counts in the Tg brains com-
pared to age-matched WT rats (Fig. 3e, f ). Microglial
activation on the other hand was clearly demonstrated

in the QA-lesioned rat brains, ipsilateral to the injection
site/needle tract (Fig. 3d).
To further support our findings, we measured the con-

centrations of 24 cytokine/chemokines in the brain
lysates of the Tg and WT animals at two different ages: 3
and 9 months. This was of relevance since the literature
was not consistent about this topic: while some groups
detected increased cytokine/chemokines [35, 59], others
did not [50]. In our hands, there were no significant dif-
ferences in cytokine/chemokine concentrations in brain
lysates between the Tg and WT rats at either age
(Fig. 4).
One limitation of our study is that direct estimation of

specific binding was not possible since there is no suit-
able reference region available for TSPO binding in this
model with diffuse neuropathology, and arterial blood
sampling is not logistically feasible. In such cases, it is
not unusual to perform qualitative comparison of the
regional distribution of the tracer (SUV) in the different
groups of animals if the studies are run in parallel. In
fact, other researchers have previously used SUV quanti-
fication with [18F]DPA-714, with success [54, 60–62].
We were also encouraged to use SUV by a recent paper
that found significant correlation between SUV values
and distribution volume measurements in rat brains
using a similar TSPO ligand [63]. Unfortunately, a simi-
lar comparison has not been done using [18F]DPA-714
in rats. Another inherent limitation of the model of our
study is the discrepancy in weight between the Tg and
WT animals as they grow older. To minimize the effect
associated with this discrepancy, we decided to correct
SUV values for weight differences [30, 31].

Fig. 4 Brain lysate concentrations of select cytokine/chemokines in Tg and WT rats, at two age groups (3 and 9 months old). There were no
statistically significant differences in cytokine/chemokine levels between the Tg and WT animals at any age
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In conclusion, even though the HIV-1Tg rat is a good
animal model of viral protein neurotoxicity and treated
HIV+ patients [46, 49, 59, 64, 65], we did not find appre-
ciable microglial activation to allow the use of [18F]DPA-
714 PET imaging as a biomarker of neurodegeneration
in the evaluation of existing and emerging neuroprotec-
tive therapies. Alternative imaging targets relevant to the
neuropathology of the Tg rat should thus be sought,
such as those related to oxidative stress [66–69], arachi-
donic acid metabolism [48], NMDA excitotoxicity, abnor-
mal dopamine receptor signaling/tyrosine metabolism [57,
70], abnormal myelination [70], and astrocytic death [58].

Additional file

Additional file 1: Figure S1. [18F]DPA-714 PET time-activity curves over
60 min derived from the caudate and hippocampus of 3-, 6-, and 9-month-
old Tg and WT rats. Error bars represent standard deviation values at each
time point. (TIFF 2460 kb)
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