208 research outputs found

    The Episteme and the Historical A Priori: On Foucault’s Archaeological Method

    Get PDF
    Interpreters of Michel Foucault's 1966 Les mots et les choses have often conflated the terms 'episteme' and 'historical a priori'. This article suggests that the two terms are entirely separate: while 'episteme' refers to the configuration of thought in a given historical period, 'historical a priori' refers to the conditions of unity for a certain field of science within a given period. In his use of the term 'historical a priori', Foucault is thus much closer to Husserl than has hitherto been appreciated. Keeping the two terms separated also sheds new light on the archaeological method that Foucault uses, showing that there is a procedure to get from an archive of texts to the reconstruction of an episteme

    Electrohysterography. A promising alternative for monitoring contractions

    Get PDF
    Monitoring contractions during labour using the external tocodynamometer can be difficult or even impossible, and using the invasive intrauterine pressure catheter is associated with rare but serious complications. A new non-invasive technique is currently available: electrohysterography (EHG). This technique converts the electrical activity of the uterine muscle into a legible tocogram. The EHG signal has a high correlation with the intrauterine pressure and provides a more accurate assessment of uterine activity compared to external tocodynamometry. EHG is suitable for women in labour with failure of the external tocodynamometer. In clinical practice EHG also appeared to report a more detailed tocographic waveform, like hypertonia or unorganized electrical uterine activity. However, its signal quality depends on adequate skin preparation and correct positioning of the electrodes on the maternal abdomen. Hence, with electrohysterography as noninvasive alternative for uterine monitoring, choosing between safety and accuracy is no longer necessary. Conflict of interest and financial support: ICMJE forms provided by the authors are available online along with the full text of this article.</p

    Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis

    Get PDF
    TGF-β1 signaling is a critical driver of collagen accumulation and fibrotic disease but also a vital suppressor of inflammation and epithelial cell proliferation. The nature of this multifunctional cytokine has limited the development of global TGF-β1 signaling inhibitors as therapeutic agents. We conducted phenotypic screens for small molecules that inhibit TGF-β1–induced epithelial-mesenchymal transition without immediate TGF-β1 receptor (TβR) kinase inhibition. We identified trihydroxyphenolic compounds as potent blockers of TGF-β1 responses (IC50 ~50 nM), Snail1 expression, and collagen deposition in vivo in models of pulmonary fibrosis and collagen-dependent lung cancer metastasis. Remarkably, the functional effects of trihydroxyphenolics required the presence of active lysyl oxidase–like 2 (LOXL2), thereby limiting effects to fibroblasts or cancer cells, the major LOXL2 producers. Mechanistic studies revealed that trihydroxyphenolics induce auto-oxidation of a LOXL2/3–specific lysine (K731) in a time-dependent reaction that irreversibly inhibits LOXL2 and converts the trihydrophenolic to a previously undescribed metabolite that directly inhibits TβRI kinase. Combined inhibition of LOXL2 and TβRI activities by trihydrophenolics resulted in potent blockade of pathological collagen accumulation in vivo without the toxicities associated with global inhibitors. These findings elucidate a therapeutic approach to attenuate fibrosis and the disease-promoting effects of tissue stiffness by specifically targeting TβRI kinase in LOXL2-expressing cells

    The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering

    Get PDF
    Nearly all cellular and disease related functions of the transcriptional co-activator lens epithelium-derived growth factor (LEDGF/p75) involve tethering of interaction partners to chromatin via its conserved integrase binding domain (IBD), but little is known about the mechanism of in vivo chromatin binding and tethering. In this work we studied LEDGF/p75 in real-time in living HeLa cells combining different quantitative fluorescence techniques: spot fluorescence recovery after photobleaching (sFRAP) and half-nucleus fluorescence recovery after photobleaching (hnFRAP), continuous photobleaching, fluorescence correlation spectroscopy (FCS) and an improved FCS method to study diffusion dependence of chromatin binding, tunable focus FCS. LEDGF/p75 moves about in nuclei of living cells in a chromatin hopping/scanning mode typical for transcription factors. The PWWP domain of LEDGF/p75 is necessary, but not sufficient for in vivo chromatin binding. After interaction with HIV-1 integrase via its IBD, a general protein–protein interaction motif, kinetics of LEDGF/p75 shift to 75-fold larger affinity for chromatin. The PWWP is crucial for locking the complex on chromatin. We propose a scan-and-lock model for LEDGF/p75, unifying paradoxical notions of transcriptional co-activation and lentiviral integration targeting

    Global Carbon Budget 2021

    Get PDF

    Global Carbon Budget 2022

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2_2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2_2 emissions (EFOS_{FOS}) are based on energy statistics and cement production data, while emissions from land-use change (ELUC_{LUC}), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2_2 concentration is measured directly, and its growth rate (GATM_{ATM}) is computed from the annual changes in concentration. The ocean CO2_2 sink (SOCEAN_{OCEAN}) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2_2 sink (SLAND_{LAND}) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM_{IM}), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS_{FOS} increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr1^{−1} (9.9 ± 0.5 GtC yr1^{−1} when the cement carbonation sink is included), and ELUC_{LUC} was 1.1 ± 0.7 GtC yr1^{−1}, for a total anthropogenic CO2_2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr1^{−1} (40.0 ± 2.9 GtCO2_2). Also, for 2021, GATM_{ATM} was 5.2 ± 0.2 GtC yr1^{−1} (2.5 ± 0.1 ppm yr1^{−1}), SOCEAN_{OCEAN} was 2.9  ± 0.4 GtC yr1^{−1}, and SLAND_{LAND} was 3.5 ± 0.9 GtC yr1^{−1}, with a BIM_{IM} of −0.6 GtC yr1^{−1} (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2_2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS_{FOS} relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2_2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr1^{−1} persist for the representation of annual to semi-decadal variability in CO2_2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2_2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b)

    Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers

    Get PDF
    Amyloid-beta 42 (A beta 42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for A beta 42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple A beta 42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.Peer reviewe
    corecore