174 research outputs found
The Intent of Residence Life Professionals to Leave the Field at Historically Black Colleges and Universities
This mixed-methods research study was designed to explore and highlight the lived experiences of residence life professionals at Historically Black Colleges and Universities (HBCU). Data collection was completed using an online survey and one-on-one interviews. This study will contribute to the discussion of retaining live-in residence life professionals at HBCUs. This research study provided suggestions and opportunities for administrators to enhance the experience of residence life professionals while keeping the mission of educating HBCU students.
It is hoped that this study will continually prompt and influence dialogue to address the consistent attrition amongst residence life professionals, especially at HBCUs. The HBCU community is attractive to both students and professionals, but is also a common contributor to the decision to leave the position at HBCUs. This research will provide a platform to address the gap in literature on residence life professionals at HBCUs
Evidence That the P\u3csub\u3ei\u3c/sub\u3e Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle
Nitrogenase reduction of dinitrogen (N2) to ammonia (NH3) involves a sequence of events that occur upon the transient association of the reduced Fe protein containing two ATP molecules with the MoFe protein that includes electron transfer, ATP hydrolysis, Pi release, and dissociation of the oxidized, ADP-containing Fe protein from the reduced MoFe protein. Numerous kinetic studies using the nonphysiological electron donor dithionite have suggested that the rate-limiting step in this reaction cycle is the dissociation of the Fe protein from the MoFe protein. Here, we have established the rate constants for each of the key steps in the catalytic cycle using the physiological reductant flavodoxin protein in its hydroquinone state. The findings indicate that with this reductant, the rate-limiting step in the reaction cycle is not protein–protein dissociation or reduction of the oxidized Fe protein, but rather events associated with the Pi release step. Further, it is demonstrated that (i) Fe protein transfers only one electron to MoFe protein in each Fe protein cycle coupled with hydrolysis of two ATP molecules, (ii) the oxidized Fe protein is not reduced when bound to MoFe protein, and (iii) the Fe protein interacts with flavodoxin using the same binding interface that is used with the MoFe protein. These findings allow a revision of the rate-limiting step in the nitrogenase Fe protein cycle
Unraveling the interactions of the physiological reductant flavodoxin with the different conformations of the Fe protein in the nitrogenase cycle
Nitrogenase reduces dinitrogen (N2) to ammonia in biological nitrogen fixation. The nitrogenase Fe protein cycle involves a transient association between the reduced, MgATP-bound Fe protein and the MoFe protein and includes electron transfer, ATP hydrolysis, release of Pi, and dissociation of the oxidized, MgADP-bound Fe protein from the MoFe protein. The cycle is completed by reduction of oxidized Fe protein and nucleotide exchange. Recently, a kinetic study of the nitrogenase Fe protein cycle involving the physiological reductant flavodoxin reported a major revision of the rate-limiting step from MoFe protein and Fe protein dissociation to release of Pi. Because the Fe protein cannot interact with flavodoxin and the MoFe protein simultaneously, knowledge of the interactions between flavodoxin and the different nucleotide states of the Fe protein is critically important for understanding the Fe protein cycle. Here we used time-resolved limited proteolysis and chemical cross-linking to examine nucleotide-induced structural changes in the Fe protein and their effects on interactions with flavodoxin. Differences in proteolytic cleavage patterns and chemical cross-linking patterns were consistent with known nucleotide-induced structural differences in the Fe protein and indicated that MgATP-bound Fe protein resembles the structure of the Fe protein in the stabilized nitrogenase complex structures. Docking models and cross-linking patterns between the Fe protein and flavodoxin revealed that the MgADP-bound state of the Fe protein has the most complementary docking interface with flavodoxin compared with the MgATP-bound state. Together, these findings provide new insights into the control mechanisms in protein–protein interactions during the Fe protein cycle. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc
Field demonstration of a cost-optimized solar powered electrodialysis reversal desalination system in rural India
This study provides experimental validation of a previously published optimal design theory for photovoltaic (PV)-powered electrodialysis reversal (EDR) desalination systems. The prior work describes the co-optimization of PV and EDR subsystems, and flexible operation to accommodate daily and annual solar irradiance variability, significantly reducing water cost. This study presents the fabrication of a PV-EDR pilot system designed using the co-optimization theory and field testing results from the rural village of Chelluru, India. Testing in the field enabled observation and evaluation of real-world factors on system performance, resulting in updates to the previous theory to include unaccounted factors that affect costs, including: filling and draining of water tanks, salt and water accumulation in tanks from prior batches, unexpected energy losses due to locally purchased converters, and scaling in the ED stack. Therefore, water cost in the PV-EDR pilot system was updated from previous estimates based on field performance. The estimated capital cost and lifetime cost of the Chelluru system are 34% and 45% lower, respectively, than the corresponding costs if the PV-EDR system was designed using conventional design practice. The theory and experimental insights presented in this paper will enable desalination engineers to better design and optimize PV-EDR systems
Updated threshold dose-distribution data for sesame
Sesame is classified as a “major” food allergen for which mandatory disclosure is required. Understanding reaction thresholds and how these vary within the allergic population is crucial in providing appropriate dietary advice to patients, providing guidance to the food industry, and informing dosing regimens for oral food challenges (FC). However, the largest data series used to derive a threshold dose-distribution for sesame included blinded challenge data from just 40 individuals.1 Data from low-dose, open FC can be used to supplement that from blinded FC, reducing uncertainty in estimating threshold dose-distributions for allergenic foods which otherwise lack sufficient data.2 We, therefore, undertook a systematic search of the literature and performed dose-distribution modelling of individual patient FC data (including open FC) to update estimated eliciting doses for sesame
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Hot Start PCR with heat-activatable primers: a novel approach for improved PCR performance
The polymerase chain reaction (PCR) is widely used for applications which require a high level of specificity and reliability, such as genetic testing, clinical diagnostics, blood screening, forensics and biodefense. Great improvements to PCR performance have been achieved by the use of Hot Start activation strategies that aim to prevent DNA polymerase extension until more stringent, higher temperatures are reached. Herein we present a novel Hot Start activation approach in PCR where primers contain one or two thermolabile, 4-oxo-1-pentyl (OXP) phosphotriester (PTE) modification groups at 3′-terminal and 3′-penultimate internucleotide linkages. Studies demonstrated that the presence of one or more OXP PTE modifications impaired DNA polymerase primer extension at the lower temperatures that exist prior to PCR amplification. Furthermore, incubation of the OXP-modified primers at elevated temperatures was found to produce the corresponding unmodified phosphodiester (PDE) primer, which was then a suitable DNA polymerase substrate. The OXP-modified primers were tested in conventional PCR with endpoint detection, in one-step reverse transcription (RT)–PCR and in real-time PCR with SYBR Green I dye and Taqman® probe detection. When OXP-modified primers were used as substitutes for unmodified PDE primers in PCR, significant improvement was observed in the specificity and efficiency of nucleic acid target amplification
Novel active agents in patients with advanced NSCLC without driver mutations who have progressed after first-line chemotherapy
Despite the efficacy of a number of first-line treatments, most patients with advanced-stage non-small cell lung cancer (NSCLC) experience disease progression that warrants further treatment. In this review, we examine the role of novel active agents for patients who progress after first-line therapy and who are not candidates for targeted therapies. More therapeutic options are needed for the management of patients with NSCLC after failure of first-line chemotherapy. A PubMed search was performed for articles from January 2012 to May 2015 using the keywords NSCLC, antiangiogenic, immunotherapy, second-line, novel therapies and English language articles only. Relevant papers were reviewed; papers outside that period were considered on a case-by-case basis. A search of oncology congresses was performed to identify relevant abstracts over this period. In recent years, antiangiogenic agents and immune checkpoint inhibitors have been added to our armamentarium to treat patients with advanced NSCLC who have progressed on first-line chemotherapy. These include nintedanib, a triple angiokinase inhibitor; ramucirumab, a vascular endothelial growth factor receptor-2 antibody; and nivolumab, pembrolizumab and atezolizumab, just three of a growing list of antibodies targeting the programmed death receptor-1 (PD-1)/PD ligand-1 pathway. Predictive and prognostic factors in NSCLC treatment will help to optimise treatment with these novel agents. The approval of new treatments for patients with NSCLC after the failure of first-line chemotherapy has increased options after a decade of few advances, and holds promise for future evolution of the management of NSCLC
- …