1,219 research outputs found

    Revisiting informed consent in forensic genomics in light of current technologies and the times

    Get PDF
    Informed consent is based on basic ethical principles that should be considered when conducting biomedical and behavioral research involving human subjects. These principles-respect, beneficence, and justice-form the foundations of informed consent which in itself is grounded on three fundamental elements: information, comprehension, and voluntary participation. While informed consent has focused on human subjects and research, the practice has been adopted willingly in the forensic science arena primarily to acquire reference samples from family members to assist in identifying missing persons. With advances in molecular biology technologies, data mining, and access to metadata, it is important to assess whether the past informed consent process and in particular associated risks are concomitant with these increased capabilities. Given the state-of-the-art, areas in which informed consent may need to be modified and augmented are as follows: reference samples from family members in missing persons or unidentified human remains cases; targeted analysis of an individual(s) during forensic genetic genealogy cases to reduce an investigative burden; donors who provide their samples for validation studies (to include population studies and entry into databases that would be applied to forensic statistical calculations) to support implementation of procedures and operations of the forensic laboratory; family members that may contribute samples or obtain genetic information from a molecular autopsy; and use of medical and other acquired samples that could be informative for identification purposes. The informed consent process should cover (1) purpose for collection of samples; (2) process to analyze the samples (to include type of data); (3) benefits (to donor, target, family, community, etc. as applicable); (4) risks (to donor, target, family, community, etc. as applicable); (5) access to data/reports by the donor; (6) sample disposition; (7) removal of data process (i.e., expungement); (8) process to ask questions/assessment of comprehension; (9) follow-up processes; and (10) voluntary, signed, and dated consent. Issues surrounding these topics are discussed with an emphasis on addressing risk factors. Addressing informed consent will allow human subjects to make decisions voluntarily and with autonomy as well as secure the use of samples for intended use.Peer reviewe

    General Aviation Pilots Over 70 Years Old

    Get PDF
    BACKGROUND: Currently it is not unusual for general aviation pilots in the United States to continue to fly beyond the age of 70, even into their 80s and 90s. Pilots have regular examinations according to protocols which do not specify special or additional requirements for pilots over 70 yr of age. Additionally, the third class medical reforms passed by the U.S. Senate on 15 July 2016 could potentially result in even less stringent medical certification requirements for general aviation pilots. METHODS: Accident rates, medical parameters, autopsy findings, and toxicological findings from the U.S. National Transportation Safety Board (NTSB) general aviation (GA) accident database were analyzed to assess potential risk factors with accident outcomes. RESULTS: During 2003ā€“2012, there were 114 (113 men, 1 woman) general aviation fatal accidents involving pilots ages 70 to 92 yr. A combination of 3 or more drugs were found in 13 (13%) of deceased pilots. The most frequent drugs were first generation antihistamines and antidepressants represented the next highest proportion of possible performance-affecting medications. CONCLUSION: This study indicates that there are critical medical factors that may contribute to fatal accidents among elderly pilots. Polypharmacy use should be taken into consideration, especially during periodic health examinations and fatal aviation investigations involving elderly pilots

    DNA identification by pedigree likelihood ratio accommodating population substructure and mutations

    Get PDF
    DNA typing is an important tool in missing-person identification, especially in mass-fatality disasters. Identification methods comparing a DNA profile from unidentified human remains with that of a direct (from the person) or indirect (for example, from a biological relative) reference sample and ranking the pairwise likelihood ratios (LR) is straightforward and well defined. However, for indirect comparison cases in which several members from a family can serve as reference samples, the full power of kinship analysis is not entirely exploited. Because biologically related family members are not genetically independent, more information and thus greater power can be attained by simultaneous use of all pedigree members in most cases, although distant relationships may reduce the power. In this study, an improvement was made on the method for missing-person identification for autosomal and lineage-based markers, by considering jointly the DNA profile data of all available family reference samples. The missing person is evaluated by a pedigree LR of the probability of DNA evidence under alternative hypotheses (for example, the missing person is unrelated or if they belong to this pedigree with a specified biological relationship) and can be ranked for all pedigrees within a database. Pedigree LRs are adjusted for population substructure according to the recommendations of the second National Research Council (NRCII) Report. A realistic mutation model was also incorporated to accommodate the possibility of false exclusion. The results show that the effect of mutation on the pedigree LR is moderate, but LRs can be significantly decreased by the effect of population substructure. Finally, Y chromosome and mitochondrial DNA were integrated into the analysis to increase the power of identification. A program titled MPKin was developed, combining the aforementioned features to facilitate genetic analysis for identifying missing persons. The computational complexity of the algorithms is explained, and several ways to reduce the complexity are introduced

    A prospective cost-benefit analysis for nylon 4N6FLOQSwabs (R) : example of the process and potential benefits

    Get PDF
    Laboratories and their criminal justice systems are confronted with challenges for implementing new technologies, practices, and policies even when there appears to be demonstrative benefits to operational performance. Impacting decisions are the often higher costs associated with, for example, new technologies, limited current budgets, and making hard decisions on what to sacrifice to take on the seemingly better approach. A prospective cost-benefit analysis (CBA) could help an agency better formulate its strategies and plans and more importantly delineate how a relatively small increase to take on, for example, a new technology can have large impact on the system (e.g., the agency, other agencies, victims and families, and taxpayers). To demonstrate the process and potential value a CBA was performed on the use of an alternate and more expensive swab with reported better DNA yield and being certified human DNA free (i.e., nylon 4N6FLOQSwabs (R)), versus the traditional less costly swab (i.e., cotton swab). Assumptions are described, potential underestimates and overestimates noted, different values applied (for low and modest to high), and potential benefits (monetary and qualitative) presented. The overall outcome is that the cost of using the more expensive technology pales compared with the potential tangible and intangible benefits. This approach could be a guide for laboratories (and associated criminal justice systems) worldwide to support increased funding, although the costs and benefits may vary locally and for different technologies, practices, and policies. With well-developed CBAs, goals of providing the best services to support the criminal justice system and society can be attained.Peer reviewe

    Medicine and health of 21st Century : Not just a high biotech-driven solution

    Get PDF
    Many biotechnological innovations have shaped the contemporary healthcare system (CHS) with significant progress to treat or cure several acute conditions and diseases of known causes (particularly infectious, trauma). Some have been successful while others have created additional health care challenges. For example, a reliance on drugs has not been a panacea to meet the challenges related to multifactorial noncommunicable diseases (NCDs)-the main health burden of the 21st century. In contrast, the advent of omics-based and big data technologies has raised global hope to predict, treat, and/or cure NCDs, effectively fight even the current COVID-19 pandemic, and improve overall healthcare outcomes. Although this digital revolution has introduced extensive changes on all aspects of contemporary society, economy, firms, job market, and healthcare management, it is facing and will face several intrinsic and extrinsic challenges, impacting precision medicine implementation, costs, possible outcomes, and managing expectations. With all of biotechnology's exciting promises, biological systems' complexity, unfortunately, continues to be underestimated since it cannot readily be compartmentalized as an independent and segregated set of problems, and therefore is, in a number of situations, not readily mimicable by the current algorithm-building proficiency tools. Although the potential of biotechnology is motivating, we should not lose sight of approaches that may not seem as glamorous but can have large impacts on the healthcare of many and across disparate population groups. A balanced approach of "omics and big data" solution in CHS along with a large scale, simpler, and suitable strategies should be defined with expectations properly managed.Peer reviewe

    Predicted activity of UGT2B7, ABCB1, OPRM1, and COMT using full-gene haplotypes and their association with the CYP2D6-inferred metabolizer phenotype

    Get PDF
    The pharmacogene, CYP2D6, is commonly used to infer metabolizer phenotype of many marketed drugs and endogenous toxins in ante- and post-mortem patients but only represents the efficiency of phase 1 metabolism. Downstream metabolic enzymes encoded by UGT2B7, ABCB1, OPRM1, and COMT also have been implicated in variable individual response to drugs due to their activity at different stages of the tramadol ADME (absorption, distribution, metabolism, and excretion) process. While commonly studied as single genes using targeted genotyping approaches, a more comprehensive tramadol metabolism profile has not been evaluated. 1000 Genomes Project data for UGT2B7, ABCB1, OPRM1, and COMT were used to characterize full-gene haplotypes and their effect on protein function using in-house excel-based workbooks, PopART, and TreeView. Population genetic summary statistics and intergenic analyses associated these haplotypes with full-gene CYP2D6-inferred metabolizer phenotype. The findings suggest that UGT2B7, ABCB1, OPRM1, and COMT may contribute to predicted metabolizer phenotype as opposed to relying solely on CYP2D6.Peer reviewe
    • ā€¦
    corecore