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Abstract 

 

Nitrogenase reduction of dinitrogen (N2) to ammonia (NH3) involves a 

sequence of events that occur upon the transient association of the reduced 

Fe protein containing two ATP molecules with the MoFe protein that includes 

electron transfer, ATP hydrolysis, Pi release, and dissociation of the oxidized, 

ADP-containing Fe protein from the reduced MoFe protein. Numerous kinetic 

studies using the nonphysiological electron donor dithionite have suggested 

that the rate-limiting step in this reaction cycle is the dissociation of the Fe 

protein from the MoFe protein. Here, we have established the rate constants 

for each of the key steps in the catalytic cycle using the physiological 

reductant flavodoxin protein in its hydroquinone state. The findings indicate 

that with this reductant, the rate-limiting step in the reaction cycle is not 

protein–protein dissociation or reduction of the oxidized Fe protein, but rather 

events associated with the Pi release step. Further, it is demonstrated that (i) 

Fe protein transfers only one electron to MoFe protein in each Fe protein cycle 

coupled with hydrolysis of two ATP molecules, (ii) the oxidized Fe protein is 

not reduced when bound to MoFe protein, and (iii) the Fe protein interacts 

with flavodoxin using the same binding interface that is used with the MoFe 

protein. These findings allow a revision of the rate-limiting step in the 

nitrogenase Fe protein cycle. 

http://doi.org/10.1021/acs.biochem.6b00421
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/acs.biochem.6b00421
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Nitrogenase is the catalyst responsible for biological nitrogen 

fixation, the reduction of dinitrogen (N2) to ammonia (NH3).1-3 The 

molybdenum-dependent nitrogenase consists of two catalytic 

components called the MoFe protein and the Fe protein.4 The Fe 

protein is a dimer of two identical subunits connected by a single [4Fe-

4S] cluster and is responsible for transferring a single electron to the 

MoFe protein.5, 6 The MoFe protein is a heterotetramer, composed of 

two symmetric αβ units. Each αβ unit contains two unique metal 

clusters, the electron carrier P-cluster [8Fe-7S] and the active site 

FeMo cofactor [7Fe-9S–Mo–C-homocitrate].7-11 An Fe protein, with two 

bound MgATP molecules, binds transiently to each αβ unit of the MoFe 

protein during the electron transfer (ET) event (Figure 1).6, 12, 13 ET is 

initiated upon association of the Fe protein with the MoFe protein, 

followed by a conformationally gated one-electron transfer from the P-

cluster to the FeMo cofactor.14, 15 This is followed by the one-electron 

transfer from the reduced Fe protein (Fered) [4Fe-4S] cluster to the 

oxidized P-cluster (P1+), in what has been called a “deficit spending” ET 

process.14 Following ET, the two ATP molecules are hydrolyzed to two 

ADP molecules and two Pi molecules. Next, the two Pi molecules are 

released from the complex, followed by the dissociation of the oxidized 

Fe protein (Feox) with two bound MgADP molecules [Feox(ADP)2] from 

the MoFe protein.16 The Feox(ADP)2 is then reduced by a reductant, and 

the two ADP molecules are replaced by two ATP molecules.17, 18 This 

cycle, often termed the Fe protein cycle, must be repeated a sufficient 

number of times to cause the accumulation of the electrons necessary 

for substrate reduction in the MoFe protein.1-3, 18-20 

 

Figure 1. Overview of nitrogenase catalysis with a focus on the Fe 

protein cycle showing dithionite (DT) and flavodoxin (FldHQ) as a 

nonphysiological reductant and a physiological reductant, respectively. 

Over the past five decades, most of the in vitro mechanistic 

studies of nitrogenase have been conducted with the nonphysiological 

reductant dithionite (DT), largely because of ease of use.1, 3, 18 The 

kinetic parameters for each step in the Fe protein cycle using DT as a 

reductant have been deduced and are summarized in the scheme 

http://doi.org/10.1021/acs.biochem.6b00421
http://epublications.marquette.edu/
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shown in Figure 2.16-18, 21, 22 It was concluded from a comparison of the 

rate constants that the overall rate-limiting step in the Fe protein cycle 

is the dissociation of Feox(ADP)2 from the MoFe protein with a rate 

constant of ∼6 s–1.16, 17 A problem that is often overlooked in such 

studies is the reversible dissociation of DT (S2O4
2–) to generate the 

actual reductant, the radical anion SO2
•–, with a Kd of ∼1.5 nM and a 

slow rate constant of ∼2 s–1.17 This leads to slow reduction of Feox, with 

rate constants for this reduction near the rate constant that is reported 

for dissociation of Feox(ADP)2 from MoFe protein.16, 17, 22, 23 

 

Figure 2. Fe protein cycle with pseudo-first-order kinetic rate 

constants for each step. 

The physiological reductants of Fe protein are known to be the 

electron carrier proteins flavodoxin (Fld) and ferredoxin (Fd).24-30 

Because nitrogenase is readily reduced by artificial electrons donors, 

such as DT, a limited number of kinetic studies using physiological 

reductants have been conducted.24, 25, 27, 30-35 The diazotroph 

Azotobacter vinelandii contains several Flds and Fds. NifF (Fld) has 

been implicated as an electron donor to nitrogenase26, 29, 30, 36 and has 

been shown to transfer electrons to Fe protein in vitro.24, 25, 27, 33, 34 

Further, disruption in the nifF gene results in a 30% decrease in 

whole-cell acetylene reduction activity. This previous research 

demonstrates that Fld is a major, but not the sole, electron donor to 

nitrogenase.26, 29 Fld has three different redox states designated as the 

oxidized quinone (FldQ), one-electron-reduced semiquinone (FldSQ), 

and two-electron-reduced hydroquinone (FldHQ).24, 37, 38 The pH- and 

temperature-dependent midpoint redox potentials (Em) for the two 

redox couples are estimated to be −180 mV (vs the NHE) for the 

FldQ/FldSQ couple and −480 mV for the FldSQ/FldHQ couple (pH 8.5 and 

22 °C).38 The FldSQ/FldHQ redox couple has sufficient driving force for 

reduction of the oxidized Fe protein with a midpoint potential of −290 

mV without nucleotide bound and −440 mV with ADP bound.25, 27, 33, 34, 

39 Earlier kinetic studies using Fld as a reductant have yielded results 

that contradict some aspects of the Fe protein cycle deduced with DT. 
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(i) The one-electron reduction of Fe protein by FldHQ is much faster 

than that by DT, and this reduction event might happen when 

Feox(ADP)2 is still bound to the MoFe protein.25 (ii) Fe protein can be 

reduced by two electrons by FldHQ to an all ferrous state, possibly 

allowing two electrons to be transferred per two ATP molecules 

hydrolyzed (a 1:1 ATP:e– ratio).33, 34 (iii) In the Fe protein cycle, the 

dissociation step might be faster than what has been widely accepted 

(∼6 s–1).25, 31-33, 40 

In this work, kinetic studies were performed using both DT and Fld 

(NifF from A. vinelandii) as reductants to deduce the key kinetic 

parameters in the Fe protein cycle. This work reveals that FldHQ cannot 

reduce the Fe protein while it is bound to MoFe protein, the ratio of the 

number of ATP molecules hydrolyzed per electron transferred remains 

at 2:1 for a wide range of substrates, and the rate-limiting step in the 

Fe protein cycle is not the dissociation of the Fe protein from the MoFe 

protein, but rather events associated with Pi release. 

Materials and Methods 

General Procedures 

All chemicals, unless otherwise noted, were obtained from 

Sigma-Aldrich (St. Louis, MO) and used without further purification. 

Hydrogen, acetylene, ethylene, argon, and dinitrogen gases were 

purchased from Air Liquide America Specialty Gases LLC 

(Plumsteadville, PA). The argon and dinitrogen gases were passed 

through an activated copper catalyst to remove dioxygen 

contamination prior to use. A. vinelandii strains DJ995 (wild-type MoFe 

protein) and DJ884 (wild-type Fe protein) were grown, and 

nitrogenase proteins were expressed and purified as previously 

described.41 Both proteins were greater than 95% pure as confirmed 

by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–

PAGE) analysis using Coomassie blue staining and fully active (see 

Results and Discussion). Proteins and buffers were handled 

anaerobically in septum-sealed serum vials under an inert atmosphere 

(argon or dinitrogen), on a Schlenk vacuum line, or anaerobic 

glovebox (MO-10-M, Teledyne Analytical Instruments, Hudson, NH). 

The transfer of gases and liquids was done with gastight syringes. 

http://doi.org/10.1021/acs.biochem.6b00421
http://epublications.marquette.edu/
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Strain Construction and Expression, Escherichia coli 

Growth, and NifF Purification 

The nifF gene from A. vinelandii was amplified via polymerase 

chain reaction and cloned into the NdeI–BamHI sites of a T7-7 plasmid 

containing an ampicillin resistance gene for selection. Fld was 

overexpressed in E. coli BL21 DE3 cells. The cells were grown to an 

optical density (600 nm) of 0.6–0.8 at 37 °C before protein expression 

was induced at 32 °C by adding isopropyl β-D-1-thiogalactopyranoside 

(IPTG) and flavin mononucleotide (FMN) to final concentrations of 1 

mM and 10 mg/L, respectively. Following a 10 h induction, cells were 

harvested. 

All steps during the purification of Fld were conducted 

anaerobically under an argon atmosphere; 100 g of cell paste was 

resuspended in 50 mM Tris (pH 8) with 2 mM dithiotheritol (DTT) at a 

biomass:buffer ratio of 1:5 (w/v). The resuspended cells were lysed in 

a French pressure cell (SLM Aminco FA-078, Aminco, Rochester, NY) at 

200 MPa. The cell lysate was centrifuged (Sorvall Lynx 4000, 

ThermoScientific, Waltham, MA) at 48000g for 30 min at 4 °C. 

Following centrifugation, 0.5% (w/v) streptomycin sulfate was added 

to the supernatant to precipitate nucleic acids. The precipitation was 

removed via a second centrifugation as described above. The 

supernatant was loaded onto a 150 mL Q-Sepharose column, which 

was first washed with 2 column volumes of buffer B [50 mM Tris, 1 M 

NaCl, and 1 mM DTT (pH 8)] and then equilibrated with 2 column 

volumes of buffer A [50 mM Tris and 1 mM DTT (pH 8)]. A 15 to 75% 

salt gradient was run over 5 column volumes. Fractions containing Fld 

(blue color) were combined and diluted with buffer A to a final NaCl 

concentration of <100 mM. FMN was added to a final concentration of 

2 mM to increase the percentage of holo-Fld in the presence of 2 mM 

DT, which slowly changed the color of the protein solution from blue to 

yellow. The reconstitution was conducted for at least 2 h at room 

temperature. The protein was then loaded onto a Q-Sepharose column 

(∼30 mL) prereduced and equilibrated with buffer B and buffer A 

containing 1 mM DT. After being loaded, the column was washed with 

1 column volume of buffer A and eluted with 100% buffer B as a 

concentrated fraction for loading onto the Sephacryl-200 column 

(∼600 mL) equilibrated with 100 mM HEPES (pH 7.8) with 150 mM 

NaCl, 0.5 mM DTT, and 1 mM DT. The Fld was followed as a yellow-

http://doi.org/10.1021/acs.biochem.6b00421
http://epublications.marquette.edu/
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green band. The protein was concentrated using an Amicon (EMD 

Millipore, Billerica, MA) concentrator with a 10000 kDa cutoff 

membrane and stored in liquid nitrogen. The purity of the Fld was 

greater than 95% based on the SDS–PAGE method described above. 

The FMN content was determined to be ∼70% of the total protein. This 

was determined by measuring the absorbance of FldQ at 452 nm and 

using an extinction coefficient of 11.3 mM–1 cm–1.37 The Fld 

concentration used in this work refers to the concentration of the holo-

Fld with FMN bound. 

Steady-State Substrate Reduction Assays for 

Determination of kcat for Fe Protein and MoFe Protein 

Substrate reduction assays were conducted in 9.4 mL sealed 

serum vials with a liquid volume of 1 mL in an assay buffer consisting 

of an MgATP regeneration system (5 mM MgCl2, 22 mM 

phosphocreatine, 4 mM ATP, 0.2 mg/mL creatine phosphokinase, and 

1 mg/mL BSA) in 100 mM MOPS buffer (pH 7.3) with 10 mM DT or a 

600 μM FldHQ/10–12 mM DT mixture. After solutions were made 

anaerobic, the headspace in the reaction vials was adjusted to proper 

partial pressures for the various gaseous substrates, such as acetylene 

and N2. The MoFe protein was then added to the designated final 

concentration. Each reaction vial was preincubated in a 30 °C water 

bath for 1 min before initiation of the reaction by the addition of Fe 

protein. Reaction mixtures were incubated for 30 s at 30 °C with a 

shaking rate of 130 rpm before the reactions were quenched by the 

addition of 500 μL of 400 mM EDTA at pH 8.0 or 500 μL of 1 M formic 

acid. The products (H2, C2H4, and NH3) from different substrate 

reduction assays were quantified according to published methods.42 

Refer to substrate reduction tables and figures for detailed information 

about assay conditions and concentrations. 

Determination of ATP/e– Values for Different Substrate 

Reduction Reactions 

The total number of electrons transferred for product formation 

(H2, C2H4, and NH3) from different substrate reduction reactions was 

determined. The reaction mixture contained 8.5 mM ATP, 9.7 mM 

MgCl2, and 1 mg of BSA in 100 mM MOPS buffer (pH 7.3) with either 

10 mM DT or a 712 μM FldHQ/10 mM DT mixture. General substrate 

http://doi.org/10.1021/acs.biochem.6b00421
http://epublications.marquette.edu/
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reduction assay procedures are described above. To quantify the 

amount of hydrolyzed ATP as formation of ADP, a trace amount of [α-
32P]ATP at a final concentration of ∼0.006 μM was added to the 

reaction mixture. The reactions were then initiated by addition of a 

mixture of MoFe and Fe protein at a designated molar ratio. A 25 μL 

aliquot was removed from the mixture and the reaction quenched with 

50 μL of 1 M formic acid. One microliter of the quenched mixture was 

spotted onto a silicon-gel thin-layer chromatography (TLC) plate and 

developed in 0.6 M potassium phosphate buffer (pH 3.4) for 70 min. 

The plate was dried and exposed overnight to a phosphor screen. The 

[α-32P]ATP and [α-32P]ADP were detected with a Storm 

PhosphorImager and quantified using the ImageQuant software 

(Molecular Dynamics). The amount of hydrolyzed ATP or produced ADP 

was quantified on the basis of the density ratio of [α-32P]ATP and [α-
32P]ADP spots from each experiment after subtracting no protein 

controls. 

Stopped-Flow (SF) Spectrophotometry and Reduction 

of Fe Protein by DT and FldHQ 

SF spectrophotometry was conducted using an AutoSF-120 

stopped-flow instrument equipped with a data acquisition system 

(KinTek Corp., Snow Shoe, PA). The change in absorbance was 

monitored at 426 nm over time. This wavelength detects a decrease in 

absorbance as the Fe protein [4Fe-4S] cluster becomes reduced. A 

wavelength of 426 nm rather than 430 nm was chosen because the 

former is the isosbestic point of Fld (Figure S6). Reactions were 

conducted at 4 °C, unless otherwise stated, with a mixing ratio of 1:1. 

All samples were prepared in 100 mM MOPS buffer (pH 7.3). Fe 

protein was oxidized in an anaerobic glovebox using an ∼3-fold molar 

excess of phenazine methosulfate (PMS). The protein/PMS mixture 

was allowed to incubate for 15 min prior to separation with Sephadex 

G-25 equilibrated with 100 mM MOPS (pH 7.3) with 150 mM NaCl. The 

oxidized Fe protein was contained in one drive syringe with or without 

nucleotide. The other drive syringe contained the electron donor, DT or 

FldHQ/DT mixture, with or without nucleotide. All reagents were used at 

the following final concentrations and kept under an argon 

atmosphere: 40 μM oxidized Fe protein, 10 mM DT, 300 μM Fld, 10 

mM ATP or ADP, and 10 mM MgCl2 (used only in the presence of 

nucleotides). For the reduction of Feox by DT, the data were fit to a 

http://doi.org/10.1021/acs.biochem.6b00421
http://epublications.marquette.edu/
http://pubs.acs.org/doi/suppl/10.1021/acs.biochem.6b00421/suppl_file/bi6b00421_si_001.pdf
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single-exponential equation to obtain the pseudo-first-order rate 

constants. Because of the presence of both FldHQ and DT in the 

experiments, the pseudo-first-order rate constants for reduction of 

Feox by FldHQ were obtained by fitting the data to a double-exponential 

equation. 

Reduction of Feox(ADP)2 by Different Reductants in the 

Presence of MoFe Protein 

The Fe–MoFe dissociation rate constant was determined using 

SF as described above except that the temperature was 25 °C. Fe 

protein was oxidized (see details above), and MoFe protein was 

stripped of DT in an anaerobic glovebox. DT was removed from MoFe 

protein using a DOWEX-Sephadex G-25 column equilibrated with 100 

mM MOPS (pH 7.3) containing 150 mM NaCl. One drive syringe 

contained 80 μM Feox, 80 μM MoFe protein, and 9 mM MgADP. The 

other syringe contained the reductant mixture: (1) 20 mM DT, (2) 100 

μM methyl viologen (MV)/20 mM DT mixture, or (3) 400 μM FldHQ/20 

mM DT mixture. All reductants contained 9 mM MgADP. DT data were 

fit to a single-exponential decay equation, and MV/DT and FldHQ/DT 

data were fit to a double-exponential decay equation. 

Primary Electron Transfer 

Primary electron transfer from the Fe protein to the MoFe 

protein in the presence of DT and Fld was measured at 25 °C using SF 

spectrophotometry as described above. All mixtures were prepared in 

100 mM MOPS (pH 7.3) and kept under an argon atmosphere. One 

syringe contained 80 μM Fe protein, 20 μM MoFe protein, and 1 mM DT 

with or without 200 μM FldHQ. The other syringe was loaded with 1 mM 

DT and 20 mM MgATP. As turnover occurred in the [Fered(MgATP)2–

MoFe] complex, the oxidation of the [4Fe-4S] cluster of the Fe protein 

was monitored by an increase in absorbance at 426 nm. Data were fit 

to a single-exponential curve. 

Quench-Flow Studies for ATP Hydrolysis 

Pre-steady-state ATP hydrolysis experiments were performed 

using a rapid chemical quench flow (KinTek) in a Coy chamber (Grass 

Lake, MI) under a argon atmosphere. Mixtures were prepared in 50 

mM MOPS (pH 7.4). Syringe A contained 80 μM Fe and 20 μM MoFe 

http://doi.org/10.1021/acs.biochem.6b00421
http://epublications.marquette.edu/
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proteins with either 10 mM DT or a 500 μM FldHQ/10 mM DT mixture. 

Syringe B contained 6 mM ATP and 8 mM MgCl2 with [α-32P]ATP. 

Eighteen microliters from syringe A was mixed with 18 μL from syringe 

B and then the reaction rapidly quenched with 45 μL of 0.75 M formic 

acid contained in syringe C. Aliquots (1 μL) of the quenched mixture 

were plated on TLC plates, and the ratios of [α-32P]ATP to [α-32P]ADP 

formed were analyzed as described above for the steady-state ATP 

hydrolysis experiments. 

Real-Time Measurement of Inorganic Phosphate (Pi) 

Release 

Pi release was assessed in a stopped-flow (SF) fluorometer 

(Auto SF-120, KinTek Corp.) using a coumarin {N-[2-(1-

maleimidyl)ethyl]-7-(diethylamino) coumarin-3-carboxamide}-labeled 

phosphate binding protein (MDCC-PBP) assay.43 Pi was quantified from 

binding MDCC-PBP that was monitored by an increase in fluorescence 

(λexc = 430 nm; λem > 450 nm), using a standard curve generated with 

KH2PO4 as described previously.43 The experiments were conducted at 

25 °C in 25 mM HEPES (pH 7.4) containing 1 mM DT. The SF syringes 

and flow lines were treated with a Pi mop [25 mM HEPES buffer (pH 

7.4) with 320 μM 7-methylguanine (7-meG), and 0.12 unit/mL purine 

nucleoside phosphorylase (PNPase)] before each experiment for 45 

min to remove contaminating Pi and then rinsed with DT-reduced 

buffer. The same concentration of the Pi mop system was also added 

to the reaction mixtures. MoFe (1 μM) and Fe (16 μM) were rapidly 

mixed with a solution of 25 μM MDCC-PBP, 7.5 mM MgCl2, and 6 mM 

ATP, and the change in fluorescence was monitored over time; 100 μM 

FldHQ was added to the MoFe/Fe protein mixture to monitor the effect 

of FldHQ on Pi release. 

In Silico Docking Study of Protein–Protein Interactions 

In silico protein–protein docking simulations were performed 

using the computational docking program ClusPro 2.0. ClusPro 2.0 

uses PIPER, a fast Fourier transform-based protein docking program 

with pairwise potentials, to derive the structure model. Flavodoxin II 

[Protein Data Bank (PDB) entry 1YOB] was used as the ligand and Fe 

protein (PDB entry 1FP6) as the receptor. The final docking model was 

chosen on the basis of the agreement of the electrostatic potentials of 

the bound complex, which were generated with PyMOL. 
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Time-Resolved Proteolysis of Flavodoxin and Fe 

Proteins 

Limited proteolysis experiments were performed on Fe protein, 

Fld, and the Fe protein–Fld complex. Protein ratios of 1:1, 1:2, and 2:1 

(Fe protein:Fld) were digested with Trypsin Gold (Promega, Madison, 

WI). The reactions were performed in sealed vials in a 50 mM 

ammonium bicarbonate, pH 8 buffer with1 mM sodium dithionite in a 

total volume of 120 μL and a protease:protein ratio of 1:1000 (w/w) at 

room temperature. Samples (15 μL) were taken at 0, 5, 10, 20, 40, 

60, and 240 min. Reactions were quenched with 1 μL of 10% formic 

acid. Ten microliters of each sample was used for analysis of the 

trypsin digestion pattern by SDS–PAGE using a 4 to 20% linear 

gradient gel (Mini-Protean TGX, Bio-Rad, Hercules, CA). 

Mapping of Proteolytic Cleavage Sites 

The molecular weight of released peptides was determined using 

an Autoflex III MALDI-TOF/TOF mass spectrometer (Bruker Daltonics, 

Billerica, MA). One microliter of each sample was cocrystallized with a 

saturated solution of α-cyano-4-hydroxycinnamic acid matrix in 50% 

acetonitrile (Thermo-Fisher Scientific, Waltham, MA) containing 0.1% 

formic acid. Peptide mass spectra were acquired in positive reflectron 

mode with an acceleration voltage of 20 kV. Spectra were 

accumulations of 1000 laser shots. Spectra were averaged from three 

spots for each time point. Tryptic peptides were mapped to the protein 

sequence using the Protein Analysis Worksheet (PAWS) software 

package (ProteoMetrics, LLC). Results were mapped onto the ClusPro 

2.0 Docking model. 

Chemical Cross-Linking 

Chemical cross-linking experiments were performed with Fe 

protein (20 μM) and Fld (Fe protein:Fld ratios of 2:1, 1:1, and 1:2) 

using 10 mM glutaraldehyde in 50 mM HEPES (pH 7.5), 150 mM NaCl, 

and 1 mM sodium dithionite. Reaction conditions were optimized to 

limit formation of higher-order aggregates. Samples were incubated 

with glutaraldehyde for 10 min, at room temperature. The reaction 

was quenched with 100 mM Tris buffer (pH 8.0). To preserve the 

native state and conformation of proteins and proteins in complex with 

their cofactors, all steps were performed under strict anaerobic 

http://doi.org/10.1021/acs.biochem.6b00421
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conditions. Complex formation and cross-linking were initiated at the 

same time. 

Cross-linked samples and controls were analyzed by SDS–PAGE 

(4 to 20% linear gradient Mini-Protean TGX, Bio-Rad). Protein bands 

corresponding to monomers and dimers were digested with trypsin as 

previously described44 prior to mass spectrometry analysis. LC–MS/MS 

measurements were performed using a maXis Impact UHR-QTOF 

instrument (Bruker Daltonics) interfaced with an Agilent 1100 HPLC 

nanoflow system (Agilent Technologies, Santa Clara, CA). Peptide 

mixtures were separated on a Dionex column (20 mm × 100 μm, 5 

μm, 100 Å, Acclaim PepMap100, C18, Dionex), kept at 40 °C, and 

eluted with a flow rate of 800 nL/min in solvents A (0.1% formic acid) 

and B (acetonitrile/0.1% formic acid) with the following gradient: 3 to 

30% B over 16 min, followed by 30 to 95% B over 3 min and a 5 min 

95% B column wash step. The column was equilibrated with 3% B for 

2 min prior to the next injection. Electrospray conditions in both MS 

and auto MS/MS modes were as follows: drying gas flow of 4.0 L/min 

at 100 °C, capillary voltage of 1600 V. Data were collected over the 

m/z range of 300–1700 at an acquisition rate of two spectra per 

second for MS and MS/MS. A linear voltage gradient depending on the 

mass:charge ratio was applied for peptides fragmented in auto MS/MS 

experiments with a decreasing order of preference +2 > +3 > +4 > 

+1 charged parent ions. Raw data were converted to mgf format using 

MS Convert and uploaded to SearchGUI (version 1.26.6.) for sequence 

identification and visualized and validated in PeptideShaker (version 

0.40.1).45 Validated peptides with an identification confidence higher 

than 95% were selected for further analysis. 

Results and Discussion 

Establishing kcat with DT or FldHQ 

In the two-component catalytic system of nitrogenase, both the 

Fe protein and the MoFe protein are catalysts. The rate-limiting step 

for the overall reaction is held to be the dissociation step in the Fe 

protein cycle (Figure 2). This means that the rate constant of the rate-

limiting step should be the same as the kcat for both Fe protein and 

MoFe protein cycles in terms of the number of electrons donated or 

accepted per active site per unit time. Earlier studies established a 

turnover number (kcat) for electron flow to substrate reduction of 

http://doi.org/10.1021/acs.biochem.6b00421
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between 5 and 10 s–1 regardless of substrate.31, 46 This value is 

approximately the same as the first-order rate constant for 

dissociation of Feox(MgADP)2 from the MoFe protein of ∼6 s–1, leading 

to the conclusion that the overall reaction rate-limiting step is 

dissociation (Figure 2).1, 16-18, 31 However, a few previous studies have 

shown that the rate of dissociation of the Fe–MoFe protein complex 

using DT is slower than the kcat under saturating (“high-flux”) 

conditions.40, 46 

Here, we determined the Vmax values for both Fe protein and 

MoFe protein cycles using either DT or Fld as a reductant by varying 

the ratio of Fe protein to MoFe protein (called the “electron flux”). The 

Vmax values for the Fe protein cycle were determined under low-flux 

conditions with a molar ratio of 1:1 ([Fe]:[MoFe]) for acetylene 

reduction and 1:2 for proton reduction using either DT or a FldHQ/DT 

mixture as a reductant. These “low-flux” conditions saturated the Fe 

protein with MoFe protein and resulted in a Fe protein cycle kcat,Fe of ∼6 

s–1 with DT as a reductant. When a FldHQ/DT mixture was used as the 

reductant, a kcat,Fe of 10–11 s–1 was observed (Table 1 and section S1 

and Figures S1–S4). These results reveal that using Fld as a reductant 

accelerates the overall reaction, suggesting that the rate-limiting 

dissociation step has been accelerated by ∼2-fold when Fld is the 

reductant compared to the dissociation rate constant when DT is the 

reductant.40 This enhancement of Vmax and kcat of both Fe and MoFe 

protein is dependent on the electron flux, with a lower flux showing 

the largest effect (Figures S2–S5). When the electron flux is increased 

to saturate the MoFe protein with Fe protein (“high flux”, 16–20:1 

[Fe]:[MoFe]) to measure the MoFe protein cycle, the kcat is found to be 

∼10–11 s–1 with both DT and Fld as the reductant. The increase in 

kcat,Fe observed for FldHQ compared to that with DT as the reductant 

could be explained by an increase in the rate of dissociation of the Fe 

protein from the MoFe protein when FldHQ is the reductant under low-

flux conditions. To test this, we determined an apparent dissociation 

rate constant for the Feox(ADP)2–MoFe protein complex with either DT 

or Fld as the reductant. 

Table 1. Steady-State kcat Values for Fe Protein and MoFe Protein with 

Different Reductants 
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protein reductant kcat (s–1)a 

Fe protein DT 5–6 

  FldHQ 10–11 

MoFe protein DT 10–11 

  FldHQ 10–11 

a 

The steady-state kcat values for Fe protein and MoFe protein 

were estimated on the basis of the Vmax of Fe protein (MW ≈ 64000 

Da) under low-electron flux conditions and Vmax of MoFe protein (MW ≈ 

240000 Da) under high-flux conditions. For detailed reaction 

conditions, refer to the legends for Figures S1–S4 and Table S1. 

Dissociation of Feox(ADP)2 from the MoFe Protein 
To determine the apparent dissociation constant using SF 

spectrophotometry, the Feox(ADP)2–MoFe protein complex was 

preformed in one syringe of the SF spectrophotometer and rapidly 

mixed against a reductant mixture. Here, such experiments were 

conducted with either DT or FldHQ in the second syringe. The reduction 

of the Feox was monitored at 426 nm, an isosbestic point for reversible 

conversion between FldSQ and FldHQ (Figure S6). As shown in Figure 3, 

the estimated first-order rate constant for dissociation (kobs) with DT 

as a reductant was ∼4 s–1. When FldHQ was the reductant, the 

dissociation and reduction of Feox(ADP)2 were much more rapid, with a 
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majority of the reduction (∼65%) occurring in <1 ms. A kobs of >760 s–

1 was estimated from a fit of the points captured after the dead time. 

These findings reveal that with FldHQ as the reductant, the reduction of 

Feox is much faster than the observed kcat, implying that dissociation of 

Feox(ADP)2 from the MoFe protein is not the rate-limiting step when 

FldHQ is used as the reductant. These results are consistent with the 

previously reported data from similar experiments.25 To further test 

the effect of the reductant on the apparent rate of dissociation, 

another nonphysiological reductant, methyl viologen, was tested.47 As 

can be seen in Figure 3, this electron donor gave a kobs of 100 s–1, 

again much faster than the kcat. 

 

Figure 3. Reduction of Feox(ADP)2 protein by DT (red), MV (green), or 

FldHQ (blue) in the presence of MoFe protein. The reduction of 

Feox(ADP)2 by different reductants was monitored as the decrease in 

the absorbance at 426 nm as a function of time. The data are 

displayed as gray dots and were fit to different equations as described 

in Materials and Methods to obtain the pseudo-first-order kobs. Syringe 

1 contained 20 mM DT with 100 μM MV or 400 μM FldHQ with 20 mM 

DT. Syringe 2 contained 80 μM Feox and 80 μM MoFe. MgADP (9 mM) 

was present in both syringes. 

The faster reduction of Feox(ADP)2 in the presence of MoFe 

protein by FldHQ could be explained by two possible mechanisms: (i) 

the very rapid dissociation of Feox(ADP)2 from the MoFe protein when 

FldHQ is the reductant, pointing to a different rate-limiting step,40 or (ii) 

FldHQ reduction of the Fe protein while it is still complexed to the MoFe 

protein,48 a mechanism proposed earlier by Haaker et al.25 To test the 

second model, the ability of FldHQ to reduce Feox(ADP)2 while still 

bound to the MoFe protein was examined. 

Effect of FldHQ on the Primary Electron Transfer of 

Nitrogenase 
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The pre-steady-state ET from the Fe protein to the MoFe protein 

offers a straightforward way to monitor the possibility of ET from FldHQ 

to Feox while it is still bound to the MoFe protein. When the Fered–MoFe 

protein mixture is mixed with MgATP in a SF spectrophotometer, an 

apparent first-order ET event is monitored by the increase in 

absorbance (oxidation of the Fe protein) that can be fit to a single 

exponential to yield a rate constant for ET (kET). With DT as the 

reductant, a kET of 173 s–1 was observed (Figure 4), consistent with 

literature values that range from 140 to 200 s–1.14-16, 22, 25 Importantly 

for this study, the absorbance value plateaus starting at 10 ms and 

stays roughly flat up to 30 ms. This plateau in absorbance reflects no 

reduction by DT of the Feox protein while it is still in the complex. At 

much later times (100 ms), the absorbance does change, reflecting a 

complex set of events as the Fe protein dissociates from the MoFe 

protein, is reduced, and rebinds to the MoFe protein. When the ET 

study is conducted with FldHQ as the reductant, nearly identical primary 

ET kinetics are observed (Figure 4). Importantly, no reduction of the 

Feox protein is observed during the 10–30 ms time frame. Given the 

earlier observation of the rate of reduction of the Feox(ADP)2 protein–

MoFe protein complex with FldHQ being >760 s–1, an on-complex 

reduction of the Fe protein in the ET study should have resulted in a 

significant (if not complete) reduction of the Fe protein before 10 ms. 

The lack of any observed reduction of the Feox protein in the ET 

experiment reveals that the FldHQ protein reduction of the Feox(ADP)2 

protein in a complex with the MoFe protein must be very slow, as 

reported previously.48 Thus, these studies, coupled with the 

dissociation studies presented in the previous section, rule out FldHQ 

reduction of the Fe protein while it is still bound to the MoFe protein25 

and instead favor a rapid dissociation of Feox(ADP)2 protein from the 

MoFe protein when FldHQ is the reductant. 

 

Figure 4. Primary ET from Fered(ATP)2 protein to MoFe protein in the 

presence of DT or FldHQ with DT. Syringe 1 contained 80 μM Fered 
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protein, 20 μM MoFe protein, 1 mM DT, and 10 mM MgATP. Syringe 2 

contained 10 mM DT or 200 μM FldHQ with 1 mM DT in the presence of 

10 mM MgATP. 

Reduction of Feox Protein by DT and FldHQ 
The studies, to this point, favor rapid dissociation of the 

Feox(ADP)2 protein from the MoFe protein when FldHQ is the reductant. 

The observed lower rate of dissociation when DT is the reductant could 

indicate slow reduction of Feox protein, rather than slow dissociation of 

the Fe protein from the MoFe protein.17, 23, 25 Several previous studies 

have illustrated low activity for nitrogenase at low a concentration of 

SO2
•– as the reductant.17-19, 22, 49 To determine the rates of reduction of 

Feox protein by different reductants, the pre-steady-state studies were 

conducted using Feox in the absence and presence of a nucleotide (ADP 

or ATP). Feox protein in one syringe was rapidly mixed against either 

DT or FldHQ in the other syringe. Additionally, these studies were 

conducted at 4 °C to slow the reactions enough to observe them. 

Consistent with previous studies, nucleotides significantly slow the 

rates of reduction of Feox protein by DT (by ∼100-fold).22, 23 In 

contrast, with FldHQ as the reductant, the rates of reduction remained 

fast and roughly unchanged with or without nucleotide present (Figure 

5).25, 27 

 

Figure 5. Kinetics of the reduction of Feox protein by DT and FldHQ with 

DT in the presence and absence of nucleotides. ET is monitored by 

observing the change in absorbance at 426 nm as a function of time. 

(A) Reduction of Fe protein by DT and FldHQ with DT with no 

nucleotide. (B) Reduction of Fe protein by DT and FldHQ with DT in the 

presence of MgADP. (C) Reduction of Fe protein by DT and FldHQ with 

DT in the presence of MgATP. Syringe 1 contained 80 μM Feox. Syringe 

2 contained 20 mM DT or 600 μM FldHQ with 20 mM DT. MgADP and 

MgATP, when included, were present in both syringes at a final 

concentration of 10 mM. The kobs values were averaged from two 

independent experiments except for that of Fld with MgATP. 
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Taken together, the studies presented so far suggest that when 

FldHQ is the reductant, dissociation of Feox(ADP)2 from the MoFe protein 

is not rate-limiting and does not correspond to the overall kcat for 

substrate reduction. Rather, the dissociation step when FldHQ is used 

as the reductant is much more rapid than the kcat. 

Protein–Protein Interaction between the Fe Protein and 

Fld 
The results presented so far indicate that FldHQ does not reduce 

the Fe protein while it is still complexed to the MoFe protein, 

suggesting that reduction occurs only after the Fe protein is free from 

the MoFe protein. We next employed molecular modeling to predict 

where the Fld would bind to the Fe protein to achieve ET. The docking 

model produced by ClusPro 2.0 predicts the binding of one Fld 

monomer to a dimer of Fe protein (Figure 6A). The distance between 

the [4Fe-4S] cluster at the active site of the Fe protein and the FMN of 

the Fld measured in PyMOL was within electron transfer distance (<10 

Å) (Figure 6B). 

 

Figure 6. Interaction of Fe protein and Fld for ET. (A) The docking 

model from ClusPro 2.0 predicts the binding of one Fld monomer to a 

dimer of Fe protein. The complex structure shows the nitrogenase Fe 

protein with subunits colored yellow and green (PDB entry 1FP6), and 

Fld (NifF) is colored blue (PDB entry 1YOB). (B) Close-up of the docked 

proteins. The distance between the [4Fe-4S] cluster at the active site 

of the iron protein and the FMN cofactor at the active site of the 

flavodoxin is predicted to be 6.4 Å. 

Analysis of electrostatic potentials performed in PyMOL 

demonstrated qualitative agreement with the ClusPro 2.0 docking 

model. The highly negative patch at the FMN cofactor of Fld sits on top 

of the highly positive patch at the location of the [4Fe-4S] cluster of 

the Fe protein (Figure S7). Salt bridge interactions were identified in 

the proposed complex binding region on either side of the FMN 

cofactor of Fld and the [4Fe-4S] cluster of the Fe protein (Figure 7A). 

The identified residues are Arg100 on one of the Fe protein subunits 
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and Glu104 of Fld and Arg140 of the Fe protein and Asp154 of Fld. 

These salt bridge interactions further support the analysis that showed 

that electrostatic interactions between the Fe protein and Fld allow 

complex formation. Interestingly, the Fe protein Arg100 residue is the 

site of ADP ribosylation, which controls association of the Fe protein 

with the MoFe protein in response to the N status of the cell.50, 51 

 

Figure 7. Mapping of the Fe protein–Fld interaction site. (A) Salt 

bridge interactions were identified in the proposed binding region on 

either side of the FMN cofactor of Fld (blue) and the [4Fe-4S] cluster 

of the Fe protein (FeP) (green and yellow). The identified residues 

were Arg100 on one of the Fe protein subunits (green) and Glu104 of 

flavodoxin and Arg140 on the other Fe protein subunit (yellow) and 

Asp154 of Fld. (B) Time-resolved proteolysis experiments show 

changes in Fld upon its binding to Fe protein. Fe protein and Fld were 

digested with trypsin before (B, left) and after formation of a complex 

(B, right). Mapping of the kinetically favored sites of cleavage revealed 

different patterns. One of the favored sites on Fld, which mapped near 

the binding surface with Fe protein (black arrow), was protected from 

cleavage in the complex (red arrow). (C) Addition of cross-linking 

reagent to the Fe protein–Fld complex [1:1 (w/w) protein ratio] 

resulted predominantly in formation of monomers (intraprotein 

linkages) and dimers (Fe protein–Fe protein and Fe protein–Fld 

interprotein linkages) (C, left). In addition to the cross-linked complex, 

the following controls were run: Fe protein, Fld, non-cross-linked Fe 

protein–Fld, and Fe protein and Fld cross-linked individually. To 

identify interacting domains, corresponding monomers and dimers 

were digested with trypsin and identified peptides (red) were mapped 

onto the ClusPro 2.0 Docking model (in panel C, middle and right 

panels show Fld and Fld in complex with Fe protein after exposure to 

glutaraldehyde, respectively). Fragments colored orange denote 

peptides underrepresented in the cross-linked sample with respect to 

unlabeled protein. The red arrow points to this part of the Fld structure 

that was absent after cross-linking. 

http://doi.org/10.1021/acs.biochem.6b00421
http://epublications.marquette.edu/
javascript:void(0);
http://pubs.acs.org/doi/full/10.1021/acs.biochem.6b00421


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Biochemistry, Vol 55, No. 26 (July 5, 2016): pg. 3625-3635. DOI. This article is © American Chemical Society and 
permission has been granted for this version to appear in e-Publications@Marquette American Chemical Society does not 
grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission 
from American Chemical Society. 

21 

 

Time-resolved limited proteolysis experiments were 

subsequently performed to test the docking model. These experiments 

involve incubation of proteins with proteases for varying lengths of 

time and then mapping the observed cleavages on the protein 

sequences. This approach facilitates identification of kinetically favored 

sites of protease cleavage. Via comparison of the peptide fragments 

before and after formation of a complex, regions that change 

conformation or are protected in the complex can be identified. 

Reactions were performed at Fe protein:Fld ratios of 1:1, 1:2, and, 

2:1, and with the two proteins alone. Sites of proteolysis were 

identified using MALDI-TOF and LC–MS/MS and mapped onto the 

docking model. Cleavage sites on Fe protein were located on solvent-

exposed surfaces under all conditions (Figure 7). Fewer sites were 

found on Fld; however, upon formation of the complex, Fld cleavage 

sites directly adjacent to the proposed binding surfaces (Figure 7B) 

were protected. Specifically, Fld tryptic fragment Lys15–Lys22 was no 

longer present when it was bound to Fe protein (Figure 7B). 

Furthermore, regions near the [4Fe-4S] cluster of the Fe protein and 

the FMN cofactor of Fld were not observed, indicating that these 

regions were also protected from proteolysis (Figure 7B). The 

proteolysis data are consistent with the docking model with respect to 

the surfaces involved in mediating protein–protein interactions. 

While implied by our data and previous models, the 

stoichiometry of the solution phase complex has not been directly 

addressed. To investigate this, chemical cross-linking experiments 

were performed. Fe protein alone, Fld alone, and Fld after complex 

formation were covalently cross-linked using 20 mM glutaraldehyde 

(GA). The proteins were exposed to GA for 10 min before the reaction 

was quenched. Analysis of the samples by SDS–PAGE showed that the 

predominant species present was consistent with an Fe protein–Fld 

binary complex (Figure 7C, left). Mass spectrometry analysis 

confirmed the presence of both proteins in the gel band of interest. 

However, some peptide fragments were no longer detectable or were 

present in much smaller quantities when Fe protein and Fld were 

engaged in a complex and exposed to GA (Figure 7). For example, on 

the basis of Fld (Figure 7C, middle and left), there are three 

distinguished regions. (1) Colored in red, this part of the protein chain 

was easily digested by trypsin and was identified by LC–MS/MS with a 

high degree of confidence. One of the fragments, Ile125–Lys146, was 
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always detectable regardless of GA treatment, suggesting a lack of 

involvement in any kind of interactions (within Fld itself and/or 

between Fld and Fe protein). (2) Colored orange, these parts of the 

protein sequence were also identified; however, they were found in 

significantly lower concentrations in cross-linked samples, which 

implies more structured regions (within Fld itself) that were in the 

proximity and were linked with GA and/or protein sections potentially 

engaged in interactions with Fe protein; colored blue, this part of the 

Fld chain was not detected in any sample. Taken together, our 

observations from chemical labeling shows that Fld peptide fragment 

Phe147–Lys160 is directly involved in contact with Fe protein; 

however, more parts of the Fld sequence might be involved in complex 

formation through subtle adjustments to conformation. 

The results from the in silico modeling, proteolysis, and cross-

linking experiments all support the predicted 1:1 stoichiometry for the 

Fe protein–Fld interaction with an interface bringing the two cofactors 

([4Fe-4S] cluster and FMN) close together to favor the ET (Figures 6 

and 7 and Figure S7). The site of interaction with Fld on the Fe protein 

surface is the same as that in the MoFe protein. To test this prediction, 

we performed the proton reduction assay under both low- and high-

electron flux conditions. The results display a significant inhibitory 

effect of Fld on the proton reduction activity (Figure S8) in the 

presence of 2.4 mM FldHQ, compared to those in the presence of 600 

μM FldHQ (Figure S1). The observed inhibition from Fld further supports 

the transient interaction between the Fe protein and Fld during 

nitrogenase catalysis.27 

Efficiency of ATP Hydrolysis per Electron Transferred for 

Substrate Reduction 
It has been reported that FldHQ can reduce the Feox protein by 

one electron to the [4Fe-4S]+ state25, 27 or by two electrons to the all 

ferrous [4Fe-4S]0 state.33, 34 From the all ferrous state, the Fe protein 

could deliver two electrons to the MoFe protein per association, 

resulting in two ATP molecules hydrolyzed per two electrons 

transferred.33, 34, 40 This possibility is contrary to the consensus that 

each association event results in two ATP molecules hydrolyzed per 

electron transferred. Using DT as the reductant, the ATP:e– ratio was 

found to be ∼2:1 with three different substrates under high- or low-

electron flux conditions (Table 2 and Figure S9). This result is 
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consistent with the previously reported data. Using FldHQ as the 

reductant, the ATP:e– ratio was also found to be ∼2:1 under high and 

low electron flux with three substrates. The results clearly indicate that 

approximately two ATP molecules were hydrolyzed per electron 

transferred [2:1 ATP:e– (Table 2)], which was independent of 

substrate, reductant (DT or FldHQ), and electron flux condition. These 

findings are consistent with a single ET per association event coupled 

to the hydrolysis of two ATP molecules even when FldHQ is the 

reductant.1, 52 

Table 2. Numbers of ATP Molecules Hydrolyzed per Electron 

Transferred for Reduction of Different Substrates by Nitrogenase under 

Different Electron Flux Conditions 

    ATP:e– ratiod 

reaction 

conditionsa 

reductant proton 

(Ar) 

N2 

(1 atm)e 

acetylenef 

(0.11 atm) 

low fluxb DT 1.87 ± 0.04 1.85 2.17 ± 0.07 

  FldHQ 1.91 ± 0.05 1.91 2.26 ± 0.12 

high fluxc DT 1.63 ± 0.12 1.82 1.89 ± 0.10 

  FldHQ 1.96 ± 0.17 1.78 2.74 ± 0.21 

a 
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All assays for product quantification were conducted in a buffer 

containing 8.5 mM MgATP without a regeneration system with 12 mM 

DT or 712 μM FldHQ and 10 mM DT. For ADP quantification assays, a 

trace concentration of [α-32P]ATP was added to the reaction mixtures. 

b 

Low-flux assays were conducted using 1.95 μM Fe protein with 2.08 

μM MoFe protein for proton and acetylene reduction and 4.16 μM MoFe 

protein for N2 reduction. 

c 

High-flux assays were conducted with 0.41 μM MoFe protein and 8 μM 

Fe protein. 

d 

The ATP:e– ratios for proton and acetylene reduction assays were 

averaged from the data at three different reaction times (Figure S1) 

with the standard deviation shown. N2 reduction values were 

calculated from assays with a reaction time of 60 s. 

e 

Total electrons for H2 and NH3 production were counted. 

f 

Only electrons for ethylene production were counted as proton 

reduction was below the detection limit. 

Pre-Steady-State and Steady-State Analysis of ATP 

Hydrolysis 
On the basis of the findings presented to this point, we conclude 

that the Fe protein–MoFe protein dissociation step is not rate-limiting. 

What then is the rate-limiting step in the overall reaction cycle? In the 

Fe protein cycle using DT as the reductant (Figure 2), the ATP 

hydrolysis (kATP = 50–70 s–1) and Pi release (kPi = 16–22 s–1) steps 

both are slower than the ET (kET = 140–200 s–1). 

Comparing rate constants for ATP hydrolysis from pre-steady-

state studies with DT or FldHQ as the reductant and a 1:4 ([MoFe]:[Fe]) 
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electron flux revealed similar values (kATP,DT and kATP,Fld) of 40 and 44 s–

1 (25 °C), respectively (Figure 8). These rate constants are 

approximately double the kcat (10–11 s–1) when considering that two 

ATP molecules are hydrolyzed per electron, indicating that ATP 

hydrolysis is not the rate-limiting step for the overall reaction. The 

steady-state (linear) rates of ATP hydrolysis are found to be kATP,DT = 

10 s–1 and kATP,Fld = 20 s–1 (25 °C), consistent with the kcat values 

reported here. The slow steady-state ATP hydrolysis rate using DT 

matches the slow reduction rate of Feox(ADP)2 and Feox(ATP)2 (kobs = 

5–6 s–1) by DT, whereas the faster kATP,Fld is consistent with the faster 

reduction of the Feox(ADP)2 and Feox(ATP)2 states by FldHQ (Figure 5).22, 

23 The ATP hydrolysis rate constant obtained under high-flux conditions 

([MoFe]:[Fe] = 1:16) showed no difference in the pre-steady-state 

rate constants for ATP hydrolysis with DT or Fld as the reductant (data 

not shown). However, the steady-state rate constant for ATP 

hydrolysis using DT is significantly increased to 25 s–1, which is 

approximately the same as the value when using FldHQ (27 s–1) under 

the same conditions. It is interesting that the steady-state ATP 

hydrolysis rate constant (25–27 s–1) is approximately the same as 

those previously reported for the pre-steady-state Pi release step [16–

22 s–1 (Figure 2)].16, 18 Given that two Pi molecules are released per 

electron transferred, the Pi release rate constant should be double the 

kcat value (∼20 s–1) if this step is the overall rate-limiting step. 

 

Figure 8. Time course of pre-steady-state and steady-state ATP 

hydrolysis during nitrogenase catalysis under Ar with DT (□) or FldHQ 

with DT (■) as the reductant at 25 °C. The hydrolysis of ATP was 

monitored with [α-32P]ATP as a tracing reagent. The ADP:MoFe protein 

ratio was plotted as a function of time. The data were fitted to two 

phases: a burst exponential followed by a linear steady state for both 

DT and FldHQ with DT. The pre-steady-state burst phase gave first-

order rate constants: kATP,DT = 40 s–1, and kATP,Fld = 44 s–1. The steady-

http://doi.org/10.1021/acs.biochem.6b00421
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/acs.biochem.6b00421#fig8
http://pubs.acs.org/doi/full/10.1021/acs.biochem.6b00421#fig8
http://pubs.acs.org/doi/full/10.1021/acs.biochem.6b00421#fig5
http://pubs.acs.org/doi/full/10.1021/acs.biochem.6b00421#fig5
javascript:void(0);
javascript:void(0);
http://pubs.acs.org/doi/full/10.1021/acs.biochem.6b00421#fig2
http://pubs.acs.org/doi/full/10.1021/acs.biochem.6b00421#fig2
javascript:void(0);
http://pubs.acs.org/doi/full/10.1021/acs.biochem.6b00421


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Biochemistry, Vol 55, No. 26 (July 5, 2016): pg. 3625-3635. DOI. This article is © American Chemical Society and 
permission has been granted for this version to appear in e-Publications@Marquette American Chemical Society does not 
grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission 
from American Chemical Society. 

26 

 

state linear phase gave the following rate constants: kATP,DT = 10 s–1, 

and kATP,Fld = 20 s–1. 

Pi Release Events 
Pi release was measured using an established fluorometric 

method43 with either DT or FldHQ as the reductant under high-electron 

flux conditions (16:1 [Fe]:[MoFe]). The data showed an initial lag 

phase followed by a linear phase with both reductants, with the linear 

phases having the following rate constants for Pi release: kPi,DT = 27 s–

1, and kPi,Fld = 25 s–1 (Figure 9). These rate constants are 

approximately double the overall reaction rate constant kcat of 10–11 

s–1 per electron. Two Pi molecules are released for each electron 

transferred, showing that the overall rate-limiting step is likely an 

event associated with Pi release. We have no data on the ADP release 

event, so the position of this event in the cycle remains unknown. 

 

Figure 9. Pi release. Real-time measurement of Pi release during 

nitrogenase catalysis using DT (gray) or FldHQ with DT (black) as the 

reductant at 25 °C. Pi release was monitored by a fluorescence 

increase caused by the binding of Pi to MDCC-PBP. The Pi:MoFe protein 

ratio is plotted as a function of time. After the initial lag phase (∼30 

ms), the data collected from 40 to 200 ms were fitted to a linear 

equation (—), giving the following rate constants: kPi,DT = 27 s–1, and 

kPi,Fld = 25 s–1. 

Establishing the Rate-Limiting Step in the Fe Protein 

Cycle 

Considering all of the rate constants for the steps in the Fe 

protein cycle with FldHQ as the reductant [electron transfer (kET = 173 

s–1), ATP hydrolysis (kATP ∼ 40–44 s–1), Pi release (25–27 s–1), and re-

reduction of Feox(ADP)2 (kobs > 1200 s–1)], we conclude that the overall 

rate-limiting steps for the reaction are events associated with the Pi 
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release step, not complex dissociation. Our findings are consistent with 

those presented for other ATP-hydrolyzing systems, including 

helicases53, 54 and myofibrillar ATPases,55-58 where Pi release is the 

rate-limiting step. 

Summary 

The Fe protein cycle can now be updated with the rate constants 

determined here using FldHQ as the reductant, as shown in Figure 10. 

The cycle begins with the rapid equilibrium docking of Fered(ATP)2 to 

MoFe protein, which is followed by the conformationally gated ET 

events. The next step is ATP hydrolysis, which is followed by events 

associated with Pi release. It is unknown if the Pi release event is 

conformationally gated, but it is clear that events associated with this 

step are rate-limiting for the overall Fe protein cycle. The dissociation 

of Feox(ADP)2 is fast, with rapid reduction by FldHQ. Finally, ATP 

replaces ADP in the free Fe protein. The order of these last two events 

is not established, but the rapid reduction by FldHQ suggests that 

reduction should occur before nucleotide exchange. 

 

Figure 10. Updated Fe protein cycle with FldHQ as the reductant. 
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DT 
dithionite 

Fld 
flavodoxin 

Fd 
ferredoxin 

FldQ 
oxidized flavodoxin quinone 

FldSQ 
one-electron-reduced flavodoxin semiquinone 

FldHQ 
reduced flavodoxin hydroquinone 

IPTG 
isopropyl β-D-1-thiogalactopyranoside 

SF 
stopped-flow 

PMS 
phenazine methosulfate 

GA 
glutaraldehyde. 
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