34 research outputs found

    A calibrated diversity assay for nucleic acid libraries using DiStRO—a Diversity Standard of Random Oligonucleotides

    Get PDF
    We have determined diversities exceeding 1012 different sequences in an annealing and melting assay using synthetic randomized oligonucleotides as a standard. For such high diversities, the annealing kinetics differ from those observed for low diversities, favouring the remelting curve after annealing as the best indicator of complexity. Direct comparisons of nucleic acid pools obtained from an aptamer selection demonstrate that even highly complex populations can be evaluated by using DiStRO, without the need of complicated calculations

    Giant stress response of terahertz magnons in a spin-orbit Mott insulator

    Get PDF
    Open Access funding enabled and organized by Projekt DEAL.Magnonic devices operating at terahertz frequencies offer intriguing prospects for high-speed electronics with minimal energy dissipation However, guiding and manipulating terahertz magnons via external parameters present formidable challenges. Here we report the results of magnetic Raman scattering experiments on the antiferromagnetic spin-orbit Mott insulator Sr2IrO4 under uniaxial stress. We find that the energies of zone-center magnons are extremely stress sensitive: lattice strain of 0.1% increases the magnon energy by 40%. The magnon response is symmetric with respect to the sign of the applied stress (tensile or compressive), but depends strongly on its direction in the IrO2 planes. A theory based on coupling of the spin-orbit-entangled iridium magnetic moments to lattice distortions provides a quantitative explanation of the Raman data and a comprehensive framework for the description of magnon-lattice interactions in magnets with strong spin-orbit coupling. The possibility to efficiently manipulate the propagation of terahertz magnons via external stress opens up multifold design options for reconfigurable magnonic devices.Publisher PDFPeer reviewe

    Depth-dependent critical behavior in V2H

    Get PDF
    Using X-ray diffuse scattering, we investigate the critical behavior of an order-disorder phase transition in a defective "skin-layer" of V2H. In the skin-layer, there exist walls of dislocation lines oriented normal to the surface. The density of dislocation lines within a wall decreases continuously with depth. We find that, because of this inhomogeneous distribution of defects, the transition effectively occurs at a depth-dependent local critical temperature. A depth-dependent scaling law is proposed to describe the corresponding critical ordering behavior.Comment: 5 pages, 4 figure

    Probing the SELEX Process with Next-Generation Sequencing

    Get PDF
    Background SELEX is an iterative process in which highly diverse synthetic nucleic acid libraries are selected over many rounds to finally identify aptamers with desired properties. However, little is understood as how binders are enriched during the selection course. Next-generation sequencing offers the opportunity to open the black box and observe a large part of the population dynamics during the selection process. Methodology We have performed a semi-automated SELEX procedure on the model target streptavidin starting with a synthetic DNA oligonucleotide library and compared results obtained by the conventional analysis via cloning and Sanger sequencing with next-generation sequencing. In order to follow the population dynamics during the selection, pools from all selection rounds were barcoded and sequenced in parallel. Conclusions High affinity aptamers can be readily identified simply by copy number enrichment in the first selection rounds. Based on our results, we suggest a new selection scheme that avoids a high number of iterative selection rounds while reducing time, PCR bias, and artifacts

    Ab initio calculation of resonant X-ray scattering in Manganites

    Full text link
    We study the origin of the resonant x-ray signal in manganites and generalize the resonant cross-section to the band structure framework. With {\it ab initio} LSDA and LSDA+U calculations we determine the resonant x-ray spectrum of LaMnO3_3. The calculated spectrum and azimuthal angle dependence at the Mn KK-edge reproduce the measured data without adjustable parameters. The intensity of this signal is directly related to the orthorhombicity of the lattice. We also predict a resonant x-ray signal at the La LL-edge, caused by the tilting of the MnO6_6 octahedra. This shows that the resonant x-ray signal in the hard x-ray regime can be understood in terms of the band structure of a material and is sensitive to the fine details of crystal structure.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev.

    Arginine Cofactors on the Polymerase Ribozyme

    Get PDF
    The RNA world hypothesis states that the early evolution of life went through a stage in which RNA served both as genome and as catalyst. The central catalyst in an RNA world organism would have been a ribozyme that catalyzed RNA polymerization to facilitate self-replication. An RNA polymerase ribozyme was developed previously in the lab but it is not efficient enough for self-replication. The factor that limits its polymerization efficiency is its weak sequence-independent binding of the primer/template substrate. Here we tested whether RNA polymerization could be improved by a cationic arginine cofactor, to improve the interaction with the substrate. In an RNA world, amino acid-nucleic acid conjugates could have facilitated the emergence of the translation apparatus and the transition to an RNP world. We chose the amino acid arginine for our study because this is the amino acid most adept to interact with RNA. An arginine cofactor was positioned at ten different sites on the ribozyme, using conjugates of arginine with short DNA or RNA oligonucleotides. However, polymerization efficiency was not increased in any of the ten positions. In five of the ten positions the arginine reduced or modulated polymerization efficiency, which gives insight into the substrate-binding site on the ribozyme. These results suggest that the existing polymerase ribozyme is not well suited to using an arginine cofactor

    Orbital reflectometry

    Full text link
    The occupation of d-orbitals controls the magnitude and anisotropy of the inter-atomic electron transfer in transition metal oxides and hence exerts a key influence on their chemical bonding and physical properties. Atomic-scale modulations of the orbital occupation at surfaces and interfaces are believed to be responsible for massive variations of the magnetic and transport properties, but could thus far not be probed in a quantitative manner. Here we show that it is possible to derive quantitative, spatially resolved orbital polarization profiles from soft x-ray reflectivity data, without resorting to model calculations. We demonstrate that the method is sensitive enough to resolve differences of 3 % in the occupation of Ni e_g orbitals in adjacent atomic layers of a LaNiO3-LaAlO3 superlattice, in good agreement with ab-initio electronic-structure calculations. The possibility to quantitatively correlate theory and experiment on the atomic scale opens up many new perspectives for orbital physics in d-electron materials

    Less Can Be More: RNA-Adapters May Enhance Coding Capacity of Replicators

    Get PDF
    It is still not clear how prebiotic replicators evolved towards the complexity found in present day organisms. Within the most realistic scenario for prebiotic evolution, known as the RNA world hypothesis, such complexity has arisen from replicators consisting solely of RNA. Within contemporary life, remarkably many RNAs are involved in modifying other RNAs. In hindsight, such RNA-RNA modification might have helped in alleviating the limits of complexity posed by the information threshold for RNA-only replicators. Here we study the possible role of such self-modification in early evolution, by modeling the evolution of protocells as evolving replicators, which have the opportunity to incorporate these mechanisms as a molecular tool. Evolution is studied towards a set of 25 arbitrary ‘functional’ structures, while avoiding all other (misfolded) structures, which are considered to be toxic and increase the death-rate of a protocell. The modeled protocells contain a genotype of different RNA-sequences while their phenotype is the ensemble of secondary structures they can potentially produce from these RNA-sequences. One of the secondary structures explicitly codes for a simple sequence-modification tool. This ‘RNA-adapter’ can block certain positions on other RNA-sequences through antisense base-pairing. The altered sequence can produce an alternative secondary structure, which may or may not be functional. We show that the modifying potential of interacting RNA-sequences enables these protocells to evolve high fitness under high mutation rates. Moreover, our model shows that because of toxicity of misfolded molecules, redundant coding impedes the evolution of self-modification machinery, in effect restraining the evolvability of coding structures. Hence, high mutation rates can actually promote the evolution of complex coding structures by reducing redundant coding. Protocells can successfully use RNA-adapters to modify their genotype-phenotype mapping in order to enhance the coding capacity of their genome and fit more information on smaller sized genomes
    corecore