70 research outputs found

    Results of the eurofoods trial on between-laboratory variation in the analysis of macronutrients in foods

    Get PDF
    In order to determine the influence of laboratory procedures on nutrient values in different food tables and data banks, an interlaboratory study was set up. Nineteen laboratories participated, and received well-homogenized samples of egg powder, full-fat milk powder, whole rye and wheat meal, biscuits and french beans to perform analyses of macronutrients by their own routine methods. For dry weight the results agreed very well; the results for ash agreed rather well. For protein the coefficient of variation between laboratories (CVbetween) ranged from 2.8% to 6.4%. The CVbetween for total fat ranged from 5.4% to 54%. For available carbohydrates the CVbetween ranged from 9% to 27%. The CVbetween for total dietary fiber ranged from 23% to 84%. It is concluded that leading laboratories produce widely different values for macronutrients in common foods. Reference materials of certified nutrient concentration are needed

    Validity of absolute intake and nutrient density of protein, potassium, and sodium assessed by various dietary assessment methods:An exploratory study

    Get PDF
    It is suggested that nutrient densities are less affected by measurement errors than absolute intake estimates of dietary exposure. We compared the validity of absolute intakes and densities of protein (kJ from protein/total energy (kJ)), potassium, and sodium (potassium or sodium (in mg)/total energy (kJ)) assessed by different dietary assessment methods. For 69 Dutch subjects, two duplicate portions (DPs), five to fifteen 24-h dietary recalls (24 hRs, telephone-based and web-based) and two food frequency questionnaires (FFQs) were collected and compared to duplicate urinary biomarkers and one or two doubly labelled water measurements. Multivariate measurement error models were used to estimate validity coefficients (VCs) and attenuation factors (AFs). This research showed that group bias diminished for protein and sodium densities assessed by all methods as compared to the respective absolute intakes, but not for those of potassium. However, the VCs and AFs for the nutrient densities did not improve compared to absolute intakes for all four methods; except for the AF of sodium density (0.71) or the FFQ which was better than that of the absolute sodium intake (0.51). Thus, using nutrient densities rather than absolute intakes does not necessarily improve the performance of the DP, FFQ, or 24 hR.</p

    Interference of flavonoids with enzymatic assays for the determination of free fatty acid and triglyceride levels

    Get PDF
    Flavonoids are bioactive food compounds with potential lipid-lowering effects. Commercially available enzymatic assays are widely used to determine free fatty acid (FFA) and triglyceride (TG) levels both in vivo in plasma or serum and in vitro in cell culture medium or cell lysate. However, we have observed that various flavonoids interfere with peroxidases used in these enzymatic assays, resulting in incorrect lower FFA and TG levels than actually present. Furthermore, addition of isorhamnetin or the major metabolite of the flavonoid quercetin in human and rat plasma, quercetin-3-O-glucuronide, to murine serum also resulted in a significant reduction of the detected TG levels, while a trend was seen for FFA levels. It is concluded that when applying these assays, vigilance is needed and alternative analytical methods, directly assessing FFA or TG levels, should be used for studying the biological effects of flavonoids on FFA and TG levels

    Beta-carotene affects gene expression in lungs of male and female Bcmo1−/− mice in opposite directions

    Get PDF
    Molecular mechanisms triggered by high dietary beta-carotene (BC) intake in lung are largely unknown. We performed microarray gene expression analysis on lung tissue of BC supplemented beta-carotene 15,15′-monooxygenase 1 knockout (Bcmo1−/−) mice, which are—like humans—able to accumulate BC. Our main observation was that the genes were regulated in an opposite direction in male and female Bcmo1−/− mice by BC. The steroid biosynthetic pathway was overrepresented in BC-supplemented male Bcmo1−/− mice. Testosterone levels were higher after BC supplementation only in Bcmo1−/− mice, which had, unlike wild-type (Bcmo1+/+) mice, large variations. We hypothesize that BC possibly affects hormone synthesis or metabolism. Since sex hormones influence lung cancer risk, these data might contribute to an explanation for the previously found increased lung cancer risk after BC supplementation (ATBC and CARET studies). Moreover, effects of BC may depend on the presence of frequent human BCMO1 polymorphisms, since these effects were not found in wild-type mice

    Generation of Large-Scale Vorticity in a Homogeneous Turbulence with a Mean Velocity Shear

    Get PDF
    An effect of a mean velocity shear on a turbulence and on the effective force which is determined by the gradient of Reynolds stresses is studied. Generation of a mean vorticity in a homogeneous incompressible turbulent flow with an imposed mean velocity shear due to an excitation of a large-scale instability is found. The instability is caused by a combined effect of the large-scale shear motions (''skew-induced" deflection of equilibrium mean vorticity) and ''Reynolds stress-induced" generation of perturbations of mean vorticity. Spatial characteristics, such as the minimum size of the growing perturbations and the size of perturbations with the maximum growth rate, are determined. This instability and the dynamics of the mean vorticity are associated with the Prandtl's turbulent secondary flows. This instability is similar to the mean-field magnetic dynamo instability. Astrophysical applications of the obtained results are discussed.Comment: 8 pages, 3 figures, REVTEX4, submitted to Phys. Rev.

    Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment

    Get PDF
    Background: High blood pressure, blood glucose, serum cholesterol, and BMI are risk factors for cardiovascular diseases and some of these factors also increase the risk of chronic kidney disease and diabetes. We estimated mortality from cardiovascular diseases, chronic kidney disease, and diabetes that was attributable to these four cardiometabolic risk factors for all countries and regions from 1980 to 2010. Methods: We used data for exposure to risk factors by country, age group, and sex from pooled analyses of population-based health surveys. We obtained relative risks for the effects of risk factors on cause-specific mortality from meta-analyses of large prospective studies. We calculated the population attributable fractions for each risk factor alone, and for the combination of all risk factors, accounting for multicausality and for mediation of the effects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specific population attributable fractions by the number of disease-specific deaths. We obtained cause-specific mortality from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all the inputs to the final estimates. Findings: In 2010, high blood pressure was the leading risk factor for deaths due to cardiovascular diseases, chronic kidney disease, and diabetes in every region, causing more than 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths, and high cholesterol for more than 10%. After accounting for multicausality, 63% (10·8 million deaths, 95% CI 10·1-11·5) of deaths from these diseases in 2010 were attributable to the combined effect of these four metabolic risk factors, compared with 67% (7·1 million deaths, 6·6-7·6) in 1980. The mortality burden of high BMI and glucose nearly doubled from 1980 to 2010. At the country level, age-standardised death rates from these diseases attributable to the combined effects of these four risk factors surpassed 925 deaths per 100 000 for men in Belarus, Kazakhstan, and Mongolia, but were less than 130 deaths per 100 000 for women and less than 200 for men in some high-income countries including Australia, Canada, France, Japan, the Netherlands, Singapore, South Korea, and Spain. Interpretation: The salient features of the cardiometabolic disease and risk factor epidemic at the beginning of the 21st century are high blood pressure and an increasing effect of obesity and diabetes. The mortality burden of cardiometabolic risk factors has shifted from high-income to low-income and middle-income countries. Lowering cardiometabolic risks through dietary, behavioural, and pharmacological interventions should be a part of the global response to non-communicable diseases. Funding: UK Medical Research Council, US National Institutes of Health. © 2014 Elsevier Ltd

    Absorption, bioavailability, and metabolism of flavonoids

    No full text
    Abstract To unravel mechanisms of action of dietary flavonoids in their potential role in disease prevention, it is crucial to know the factors that determine their release from foods, their extent of absorption, and their fate in the organism. Research on absorption, metabolism, and bioavailability of flavonoids will answer these questions. The subclass, flavonols, with quercetin as the major dietary flavonol, was the first to be studied, and information on other subclasses of flavonoids is emerging. Most flavonoids, except for the subclass of catechins, are present in plants bound to sugars as b-glycosides. This structural feature determines whether the flavonoid can be absorbed from the small intestine or has to go to the colon before absorption can occur. Generally, but exceptions have been described, glucosides are the only glycosides that can be absorbed from the small intestine. Absorption from the small intestine is more efficient than from the colon and will lead to higher plasma values. After absorption from the small intestine, flavonoids are conjugated with glucuronic acid or sulfate or O-methylation may occur. The conjugation reactions, which occur in the small intestine upon absorption, are very efficient. As a result, no free flavonoid aglycones can be found in plasma or urine, except for catechins. Plasma concentrations due to a normal diet will be less than 1 mM. Flavonoids that cannot be absorbed from the small intestine, and absorbed flavonoids secreted with bile, will be degraded in the colon by microorganisms, which will break down the flavonoid ring structure. The resulting phenolic acids have partly been characterised. These phenolic acids can be absorbed and have been measured in plasma and urine. Future research will need to address tissue distribution, cellular uptake, and cellular metabolism
    • …
    corecore