186 research outputs found

    Alginate inhibits iron absorption from ferrous gluconate in a randomized controlled trial and reduces iron uptake into Caco-2 cells

    Get PDF
    Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n=15) were given a test meal of 200g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p=0.003). Sub-group B (n=9) consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p=0.014), and from alginate beads by 37%, from 8.3% to 5.2% (p=0.009). In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p=0.009) and 35% (p=0.003) respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p<0.001) of that observed with ferrous gluconate alone. The results of these studies demonstrate that alginate beads are not a useful delivery system for soluble salts of iron for the purpose of food fortification

    Raman analysis of a shocked planetary surface analogue: Implications for habitability on Mars

    Get PDF
    The scientific aims of the ExoMars Raman laser spectrometer (RLS) include identifying biological signatures and evidence of mineralogical processes associated with life. The RLS instrument was optimised to identify carbonaceous material, including reduced carbon. Previous studies suggest that reduced carbon on the Martian surface (perhaps originating from past meteoric bombardment) could provide a feedstock for microbial life. Therefore, its origin, form, and thermal history could greatly inform our understanding of Mars' past habitability. Here, we report on the Raman analysis of a Nakhla meteorite analogue (containing carbonaceous material) that was subjected to shock through projectile impact to simulate the effect of meteorite impact. The characterisation was performed using the RLS Simulator, in an equivalent manner to that planned for ExoMars operations. The spectra obtained verify that the flight-representative system can detect reduced carbon in the basaltic sample, discerning between materials that have experienced different levels of thermal processing due to impact shock levels. Furthermore, carbon signatures acquired from the cratered material show an increase in molecular disorder (and we note that this effect will be more evident at higher levels of thermal maturity). This is likely to result from intense shearing forces, suggesting that shock forces within basaltic material may produce more reactive carbon. This result has implications for potential (past) Martian habitability because impacted, reduced carbon may become more biologically accessible. The data presented suggest the RLS instrument will be able to characterise the contribution of impact shock within the landing site region, enhancing our ability to assess habitability

    Walking the talk for dementia: a unique immersive, embodied, and multi‐experiential initiative

    Get PDF
    Coping with dementia requires an integrated approach encompassing personal, health, research, and community domains. Here we describe “Walking the Talk for Dementia,” an immersive initiative aimed at empowering people with dementia, enhancing dementia understanding, and inspiring collaborations. This initiative involved 300 participants from 25 nationalities, including people with dementia, care partners, clinicians, policymakers, researchers, and advocates for a 4-day, 40 km walk through the Camino de Santiago de Compostela, Spain. A 2-day symposium after the journey provided novel transdisciplinary and horizontal structures, deconstructing traditional hierarchies. The innovation of this initiative lies in its ability to merge a physical experience with knowledge exchange for diversifying individuals' understanding of dementia. It showcases the transformative potential of an immersive, embodied, and multi-experiential approach to address the complexities of dementia collaboratively. The initiative offers a scalable model to enhance understanding, decrease stigma, and promote more comprehensive and empathetic dementia care and research

    A natural mutation in Pisum sativum L. (pea) alters starch assembly and improves glucose homeostasis in humans

    Get PDF
    Elevated postprandial glucose (PPG) is a significant risk factor for non-communicable diseases globally. Currently, there is a limited understanding of how starch structures within a carbohydrate-rich food matrix interact with the gut luminal environment to control PPG. Here, we use pea seeds (Pisum sativum) and pea flour, derived from two near-identical pea genotypes (BC1/19RR and BC1/19rr) differing primarily in the type of starch accumulated, to explore the contribution of starch structure, food matrix and intestinal environment to PPG. Using stable isotope 13C-labelled pea seeds, coupled with synchronous gastric, duodenal and plasma sampling in vivo, we demonstrate that maintenance of cell structure and changes in starch morphology are closely related to lower glucose availability in the small intestine, resulting in acutely lower PPG and promotion of changes in the gut bacterial composition associated with long-term metabolic health improvements

    Total and Subtypes of Dietary Fat Intake and Its Association with Components of the Metabolic Syndrome in a Mediterranean Population at High Cardiovascular Risk

    Get PDF
    Background: The effect of dietary fat intake on the metabolic syndrome (MetS) and in turn on cardiovascular disease (CVD) remains unclear in individuals at high CVD risk. Objective: To assess the association between fat intake and MetS components in an adult Mediterranean population at high CVD risk. Design: Baseline assessment of nutritional adequacy in participants (n = 6560, men and women, 55-75 years old, with overweight/obesity and MetS) in the PREvención con DIeta MEDiterránea (PREDIMED)-Plus randomized trial. Methods: Assessment of fat intake (total fat, monounsatured fatty acids: MUFA, polyunsaturated fatty acids: PUFA, saturated fatty acids: SFA, trans-fatty acids: trans-FA, linoleic acid, α-linolenic acid, and ω-3 FA) using a validated food frequency questionnaire, and diet quality using 17-item Mediterranean dietary questionnaire and fat quality index (FQI). Results: Participants in the highest quintile of total dietary fat intake showed lower intake of energy, carbohydrates, protein and fiber, but higher intake of PUFA, MUFA, SFA, TFA, LA, ALA and ω-3 FA. Differences in MetS components were found according to fat intake. Odds (5th vs. 1st quintile): hyperglycemia: 1.3-1.6 times higher for total fat, MUFA, SFA and ω-3 FA intake; low high-density lipoprotein cholesterol (HDL-c): 1.2 higher for LA; hypertriglyceridemia: 0.7 lower for SFA and ω-3 FA intake. Conclusions: Dietary fats played different role on MetS components of high CVD risk patients. Dietary fat intake was associated with higher risk of hyperglycemia

    Expected Performances of the NOMAD/ExoMars instrument

    Get PDF
    NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers – SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in [Vandaele et al., Optics Express, 2015] and [Thomas et al., Optics Express, 2015], the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, H2O, HDO, C2H2, C2H4, C2H6, H2CO, CH4, SO2, H2S, HCl, HCN, HO2, NH3, N2O, NO2, OCS, O3. NOMAD should have the ability to measure methane concentrations <25 parts per trillion (ppt) in solar occultation mode, and 11 parts per billion in nadir mode. Occultation detections as low as 10 ppt could be made if spectra are averaged [Drummond et al., Planetary Space and Science, 2011]. Results have been obtained for all three channels in nadir and in solar occultation

    Voltammetric sensor for theophylline using sol-gel immobilized molecularly imprinted polymer particles

    Get PDF
    El títol del pre-print va ser: Development of a voltammetric sensor for theophylline with sol-gel immobilised molecularly imprinted polymer particlesApplication of Molecularly Imprinted Polymers (MIPs) to sensor substrates holds great promise within the field of electrochemical sensing due to their low price, tailored selectivity and facile synthesis protocols. Though MIPs can be synthesised directly onto the surface of sensors via layer or film deposition, this can be difficult due to the high number of interdependent steps involved in their synthesis. For this reason, synthesis of MIP particles is more frequently employed by synthetic and non-specialist laboratories alike. There is, however a lack of immobilisation protocols for these particles. Herein, there is presented a sol-gel based immobilisation method for MIP particles for the development of an electrochemical sensor. The macroporous precipitation-polymerised particles were imprinted with Theophylline, combined with graphite in the sol-gel and deposited on an electrode surface. The sensor was tested using differential pulse voltammetry. A limit of detection of 1µM and a relative standard deviation of 6.85% was observed for the primary analyte. The electrode was regenerated via a thermal washing process with a signal loss of 29.3% following the initial regeneration and 2.35% per subsequent regeneration

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore