2,224 research outputs found

    Lagoon water-level oscillations driven by rainfall and wave climate

    Get PDF
    Barrier breaching and subsequent inlet formation represent critical processes that ensure the temporary or permanent connection and transference of water, nutrients, or living organisms between a lagoon and the open sea. Here, we investigate the conditions inducing natural barrier breaching through a 34 months monitoring program of water-level oscillations within a shallow lagoon and the adjacent nearshore, at the Northern coast of the Iberian Peninsula, Louro lagoon. Seven natural openings were identified to have occurred during the three monitored wet seasons, from the 2009 to 2012, (Wet1, Wet2 and Wet3); four in the Wetl, two in the Wet2 and one in. the Wet3. The openings were grouped in three types depending on the observed relation between the lagoon water-level (L-wl), the estimated berm height (B-h) and the water-level at the beach (B-wl): (i) openings by lagoon outflow, which include those characterized by L-wl higher than B-h and lower B-wl; (ii) openings by wave inundation, including those induced by B-wl higher than B-h, and (iii) mixed openings, which result from a combination of the two previous conditions. We observed that L-wl is modulated by the rainfall regime (R-f) and can be explained by the accumulated precipitation. We estimated applying runup equations to obtain B-h and B-wl which depend on the wave climate and tidal level. The inlet lifespan was found to be regulated by the wave climate and rainfall regime; in particular barrier sealing was associated with a sudden increase in wave period and a reduction in precipitation. This work proves that the natural openings could be predicted successfully with support to medium term water-level monitoring programs, which in turn may significantly contribute to strategic decision making for management and conservation purposes.Xunta de Galicia [08MDS036000PR, PlanI2C-ED481B 2014/132-0]MICINN [CTM2012-39599-C03-01]Portuguese Science Foundation [IF/01047/2014]info:eu-repo/semantics/publishedVersio

    Altered metabolic activity in the developing brain of rats predisposed to high versus low depression-like behavior

    Get PDF
    Individual differences in human temperament can increase risk for psychiatric disorders like depression and anxiety. Our laboratory utilized a rat model of temperamental differences to assess neurodevelopmental factors underlying emotional behavior differences. Rats selectively bred for low novelty exploration (Low Responders, LR) display high levels of anxiety- and depression-like behavior compared to High Novelty Responder (HR) rats. Using transcriptome profiling, the present study uncovered vast gene expression differences in the early postnatal HR versus LR limbic brain, including changes in genes involved in cellular metabolism. These data led us to hypothesize that rats prone to high (versus low) anxiety/depression-like behavior exhibit distinct patterns of brain metabolism during the first weeks of life, which may reflect disparate patterns of synaptogenesis and brain circuit development. Thus, in a second experiment we examined activity of Cytochrome C Oxidase (COX), an enzyme responsible for ATP production and a correlate of metabolic activity, to explore functional energetic differences in HR/LR early postnatal brain. We found that HR rats display higher COX activity in the amygdala and specific hippocampal subregions compared to LRs during the first 2 weeks of life. Correlational analysis examining COX levels across several brain regions and multiple early postnatal time points suggested desynchronization in the developmental timeline of the limbic HR versus LR brain during the first two postnatal weeks. These early divergent COX activity levels may reflect altered circuitry or synaptic activity in the early postnatal HR/LR brain, which could contribute to the emergence of their distinct behavioral phenotypes

    Neurochemical Characterization of the Tree Shrew Dorsal Striatum

    Get PDF
    The striatum is a major component of the basal ganglia and is associated with motor and cognitive functions. Striatal pathologies have been linked to several disorders, including Huntington’s, Tourette’s syndrome, obsessive–compulsive disorders, and schizophrenia. For the study of these striatal pathologies different animal models have been used, including rodents and non-human primates. Rodents lack on morphological complexity (for example, the lack of well defined caudate and putamen nuclei), which makes it difficult to translate data to the human paradigm. Primates, and especially higher primates, are the closest model to humans, but there are ever-increasing restrictions to the use of these animals for research. In our search for a non-primate animal model with a striatum that anatomically (and perhaps functionally) can resemble that of humans, we turned our attention to the tree shrew. Evolutionary genetic studies have provided strong data supporting that the tree shrews (Scadentia) are one of the closest groups to primates, although their brain anatomy has only been studied in detail for specific brain areas. Morphologically, the tree shrew striatum resembles the primate striatum with the presence of an internal capsule separating the caudate and putamen, but little is known about its neurochemical composition. Here we analyzed the expression of calcium-binding proteins, the presence and distribution of the striosome and matrix compartments (by the use of calbindin, tyrosine hydroxylase, and acetylcholinesterase immunohistochemistry), and the GABAergic system by immunohistochemistry against glutamic acid decarboxylase and Golgi impregnation. In summary, our results show that when compared to primates, the tree shrew dorsal striatum presents striking similarities in the distribution of most of the markers studied, while presenting some marked divergences when compared to the rodent striatum

    Dopamine Pathology in Schizophrenia: Analysis of Total and Phosphorylated Tyrosine Hydroxylase in the Substantia Nigra

    Get PDF
    Introduction: Despite the importance of dopamine neurotransmission in schizophrenia, very few studies have addressed anomalies in the mesencephalic dopaminergic neurons of the substantia nigra/ventral tegmental area (SN/VTA). Tyrosine hydroxylase (TH) is the rate-limiting enzyme for the production of dopamine, and a possible contributor to the anomalies in the dopaminergic neurotransmission observed in schizophrenia. Objectives: In this study, we had three objectives: (1) Compare TH expression (mRNA and protein) in the SN/VTA of schizophrenia and control postmortem samples. (2) Assess the effect of antipsychotic medications on the expression of TH in the SN/VTA. (3) Examine possible regional differences in TH expression anomalies within the SN/VTA. Methods: To achieve these objectives three independent studies were conducted: (1) A pilot study to compare TH mRNA and TH protein levels in the SN/VTA of postmortem samples from schizophrenia and controls. (2) A chronic treatment study was performed in rodents to assess the effect of antipsychotic medications in TH protein levels in the SN/VTA. (3) A second postmortem study was performed to assess TH and phosphorylated TH protein levels in two types of samples: schizophrenia and control samples containing the entire rostro-caudal extent of the SN/VTA, and schizophrenia and control samples containing only mid-caudal regions of the SN/VTA. Results and Conclusion: Our studies showed impairment in the dopaminergic system in schizophrenia that could be mainly (or exclusively) located in the rostral region of the SN/VTA. Our studies also showed that TH protein levels were significantly abnormal in schizophrenia, while mRNA expression levels were not affected, indicating that TH pathology in this region may occur posttranscriptionally. Lastly, our antipsychotic animal treatment study showed that TH protein levels were not significantly affected by antipsychotic treatment, indicating that these anomalies are an intrinsic pathology rather than a treatment effect

    Light and Electron Microscopy Study of Glycogen Synthase Kinase-3β in the Mouse Brain

    Get PDF
    Glycogen synthase kinase-3β (GSK3β) is highly abundant in the brain. Various biochemical analyses have indicated that GSK3β is localized to different intracellular compartments within brain cells. However, ultrastructural visualization of this kinase in various brain regions and in different brain cell types has not been reported. The goal of the present study was to examine GSK3β distribution and subcellular localization in the brain using immunohistochemistry combined with light and electron microscopy. Initial examination by light microscopy revealed that GSK3β is expressed in brain neurons and their dendrites throughout all the rostrocaudal extent of the adult mouse brain, and abundant GSK3β staining was found in the cortex, hippocampus, basal ganglia, the cerebellum, and some brainstem nuclei. Examination by transmission electron microscopy revealed highly specific subcellular localization of GSK3β in neurons and astrocytes. At the subcellular level, GSK3β was present in the rough endoplasmic reticulum, free ribosomes, and mitochondria of neurons and astrocytes. In addition GSK3β was also present in dendrites and dendritic spines, with some postsynaptic densities clearly labeled for GSK3β. Phosphorylation at serine-9 of GSK3β (pSer9GSK3β) reduces kinase activity. pSer9GSK3β labeling was present in all brain regions, but the pattern of staining was clearly different, with an abundance of labeling in microglia cells in all regions analyzed and much less neuronal staining in the subcortical regions. At the subcellular level pSer9GSK3β labeling was located in the endoplasmic reticulum, free ribosomes and in some of the nuclei. Overall, in normal brains constitutively active GSK3β is predominantly present in neurons while pSer9GSK3β is more evident in resting microglia cells. This visual assessment of GSK3β localization within the subcellular structures of various brain cells may help in understanding the diverse role of GSK3β signaling in the brain

    Predicting the effects of climate change on future freshwater fish diversity at global scale

    Get PDF
    The aim of the present study was to predict future changes in biodiversity attributes (richness, rarity, heterogeneity, evenness, functional diversity and taxonomic diversity) of freshwater fish species in river basins around the world, under different climate scenarios. To do this, we use a new methodological approach implemented within the ModestR software (NOO3D) which allows estimating simple species distribution predictions for future climatic scenarios. Data from 16,825 freshwater fish species were used, representing a total of 1,464,232 occurrence records. WorldClim 1.4 variables representing average climate variables for the 1960¿1990 period, together with elevation measurements, were used as predictors in these distribution models, as well as in the selection of the most important variables that account for species distribution changes in two scenarios (Representative Concentration Pathways 4.5 and 6.0). The predictions produced suggest the extinction of almost half of current freshwater fish species in the coming decades, with a pronounced decline in tropical regions and a greater extinction likelihood for species with smaller body size and/or limited geographical ranges.We acknowledge institutional support from the Unit of Information Resources for Research at the Unit of Information Resources for Research at the "Consejo Superior de Investigaciones Científicas" (CSIC) for the article-processing charges contribution

    Is Transcription Factor Binding Site Turnover a Sufficient Explanation for Cis-Regulatory Sequence Divergence?

    Get PDF
    The molecular evolution of cis-regulatory sequences is not well understood. Comparisons of closely related species show that cis-regulatory sequences contain a large number of sites constrained by purifying selection. In contrast, there are a number of examples from distantly related species where cis-regulatory sequences retain little to no sequence similarity but drive similar patterns of gene expression. Binding site turnover, whereby the gain of a redundant binding site enables loss of a previously functional site, is one model by which cis-regulatory sequences can diverge without a concurrent change in function. To determine whether cis-regulatory sequence divergence is consistent with binding site turnover, we examined binding site evolution within orthologous intergenic sequences from 14 yeast species defined by their syntenic relationships with adjacent coding sequences. Both local and global alignments show that nearly all distantly related orthologous cis-regulatory sequences have no significant level of sequence similarity but are enriched for experimentally identified binding sites. Yet, a significant proportion of experimentally identified binding sites that are conserved in closely related species are absent in distantly related species and so cannot be explained by binding site turnover. Depletion of binding sites depends on the transcription factor but is detectable for a quarter of all transcription factors examined. Our results imply that binding site turnover is not a sufficient explanation for cis-regulatory sequence evolution

    The Role of Environment in the Mass-Metallicity Relation

    Full text link
    Using a sample of 57,377 star-forming galaxies drawn from the Sloan Digital Sky Survey, we study the relationship between gas-phase oxygen abundance and environment in the local Universe. We find that there is a strong relationship between metallicity and environment such that more metal-rich galaxies favor regions of higher overdensity. Furthermore, this metallicity-density relation is comparable in strength to the color-density relation along the blue cloud. After removing the mean dependence of environment on color and luminosity, we find a significant residual trend between metallicity and environment that is largely driven by galaxies in high-density regions, such as groups and clusters. We discuss the potential source of this relationship between metallicity and local galaxy density in the context of feedback models, with special attention paid to quantifying the impact of environment on the scatter in the mass-metallicity relation. We find that environment is a non-negligible source of scatter in this fundamental relation, with > 15% of the measured scatter correlated with environment.Comment: Submitted to MNRA

    Energy efficiency embedded service lifecycle: Towards an energy efficient cloud computing architecture

    Get PDF
    The paper argues the need to provide novel methods and tools to support software developers aiming to optimise energy efficiency and minimise the carbon footprint resulting from designing, developing, deploying and running software in Clouds, while maintaining other quality aspects of software to adequate and agreed levels. A cloud architecture to support energy efficiency at service construction, deployment, and operation is discussed, as well as its implementation and evaluation plans.Postprint (published version

    On Measuring Chemical Abundances in Distant Galaxies Using Global Emission Line Spectra

    Full text link
    The advent of 8--10 meter class telescopes enables direct measurement of the chemical properties in the ionized gas of cosmologically--distant galaxies with the same nebular analysis techniques used in local H II regions. We show that spatially unresolved (i.e., global) emission line spectra can reliably indicate the chemical properties of distant star-forming galaxies. However, standard nebular chemical abundance measurement methods (those with a measured electron temperature from [O III] lambda4363) may be subject to small systematic errors when the observed volume includes a mixture of gas with diverse temperatures, ionization parameters, and metallicities. To characterize these systematic effects, we compare physical conditions derived from spectroscopy of individual H II regions with results from global galaxy spectroscopy. We consider both low-mass, metal poor galaxies with uniform abundances and larger galaxies with internal chemical gradients. Well-established empirical calibrations using strong-line ratios can serve as reliable (~0.2 dex) indicators of the overall systemic oxygen abundance even when the signal-to-noise of the Hbeta and [O III] emission lines is as low as 8:1. We present prescriptions, directed toward high-redshift observers, for using global emission line spectra to trace the chemical properties of star-forming galaxies in the distant universe. [abridged]Comment: Accepted for Publication in the Astrophysical Journal; 34 pages, 10 figures, uses AASTeX and psfi
    corecore