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ABSTRACT 11 

Barrier breaching and subsequent inlet formation represent critical processes that ensure the 12 

temporary or permanent connection and transference of water, nutrients, or living organisms between a 13 

lagoon and the open sea. Here, we investigate the conditions inducing natural barrier breaching through 14 

a 34 months monitoring program of water-level oscillations within a shallow lagoon and the adjacent 15 

nearshore, at the Northern coast of the Iberian Peninsula, Louro lagoon. Seven natural openings were 16 

identified during the three monitored wet seasons (Wet1, Wet2 and Wet3), four in the Wet1, two in the 17 

Wet2 and 1 in the Wet3. Identified openings were grouped in three types depending on the observed 18 

relation between the lagoon water-level (Lwl), the berm height (Bh) and the water-level at the beach (Bwl): 19 

(i) openings by lagoon outflow, which include those characterized by Lwl higher than the Bh and lower 20 

Bwl; (ii) openings by wave overwash, including those induced by Bwl higher than the Bh, and (iii) mixed 21 

openings, which result from a combination of the two previous conditions. We have found that the Lwl 22 

is modulated by the rainfall regime (Rf) and can be explained by the accumulated precipitation while Bh 23 

and Bwl depend on the wave climate and tidal level and can be estimated applying runup equations. The 24 

inlet lifespan was found to be regulated by the wave climate and rainfall regime; in particular barrier 25 

sealing was associated with a sudden increase in wave period and reduction in precipitation. This work 26 

proves that the natural openings could be predicted successfully with support to medium term water-27 

level monitoring programs, which in turn may significantly contribute to strategic decision making for 28 

management and conservation purposes.  29 
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1. INTRODUCTION 33 

Coastal barrier breaching (inlet formation) is a complex morphodynamic process that enables free 34 

water exchange between the lagoon and the open sea. Processes performing at both the seaward and the 35 

bay side of a barrier may induced barrier breaching (Boothroyd, 1985; Fagherazzi and Priestas, 2012; 36 

Gordon, 1990; Hayes, 1979; Kraus et al., 2002; Pierce, 1970). The consequences of such processes are 37 

not restricted to lagoon and barrier morphology (Bird, 1993; FitzGerald et al., 2000; Gordon, 1990; 38 

Kraus et al., 2002; Morris and Turner, 2010; Pacheco et al., 2011), but they also have a significant 39 

impact over the biogeochemical fluxes by promoting water, sediments, nutrients and pollutants 40 

exchange, with the sea (Dussaillant et al., 2009; Dye and Barros, 2005; Gale et al., 2006; Moreno et al., 41 

2010; Schallenberg et al., 2010). Once open, inlets can remain active or close after a period of time 42 

depending on their hydraulic efficiency, which in turn depends on the rainfall regime, the tidal prism 43 

and the long-shore and/or cross-shore sediment transport by local waves (Castelle et al., 2007; Cayocca, 44 

2001; Cruces et al., 2009; Fitzgerald et al., 1984; Fortunato et al., 2014; Green et al., 2013; Ranasinghe 45 

and Pattiaratchi, 2003; Ranasinghe et al., 1999; Rich and Keller, 2013). Yet, inlets can intermittently 46 

open and close, imposing a temporary character to the connection between lagoons and the ocean.  47 

Depending on the timing of their opening through the year, inlets can be regular, i.e. the connection 48 

with open sea occurs seasonally or cyclically, or they can be irregular, if the opening timing does not 49 

occur periodically. Regular openings are related to seasonal favorable conditions such as (i) high water-50 

levels and large storm waves impacting the sea side of coastal barriers, or (ii) lagoon high water-levels 51 

induced by strong river discharges and heavy rainfalls (Bird, 1993; Dussaillant et al., 2009; Gale et al., 52 

2006; Gordon, 1990; Weidman and Ebert, 2013). Alternatively, irregular openings usually occur at sites 53 

where the seasonal contrasts are not significant, preventing periodic timing in their opening-closing 54 

behavior (Gale et al., 2006; Gordon, 1990; Morris and Turner, 2010). Yet, it is worth noticing that many 55 

of the examples described in the literature refer to manually opened inlets (with the support of 56 

bulldozers) for flood-abatement and flushing purposes (Fortunato et al., 2014; Kraus and Wamsley, 57 

2003; Roy et al., 2001; Wainwright and Baldock, 2015). 58 

Establishing the frequency and the thresholds of natural barrier breaching and closure is crucial for 59 



vulnerability assessment and to prevent the loss of human lives, damage to infrastructures in populated 60 

coastal areas and/or damage to ecosystem services. Despite this, understanding barrier breaching and 61 

closure is constrained by limitations related to the apparently unpredictable character of natural openings 62 

and closures, and the oftentimes lack of data regarding barrier breaching and inlet development fronting 63 

a coastal lagoon. Indeed, very few are the examples that include a complete monitoring to understand 64 

all the processes involved and provide the required information for management purposes.  65 

To our knowledge, so far only a few studies have been made in small coastal lagoons -pocket 66 

lagoons- (Figueiredo et al., 2007; Gordon, 1981; Rijkenberg, 2015), and are inexistent in coastal lagoons 67 

located in rocky coasts. In this regard, the present work aims at resolving the mechanisms behind barrier 68 

breaching and closure of intermittently connected lagoons by monitoring water-levels in a coastal 69 

lagoon. The study site is located at the NW Iberian coast, with a relatively small surface and catchment 70 

area and feeding by an ephemeral river. The aim is to improve our understanding on natural breaching 71 

and closure processes with particular attention to those openings induced by extremely high water 72 

lagoon levels. To understand the mechanisms behind the opening and closure of the ephemeral inlet at 73 

Louro lagoon we have examined the water-level changes in the lagoon and explored the most likely 74 

associated forcers. This was undertaken through the analysis of different data sets of water-level 75 

monitoring (sea and lagoon), topographic, wave climate and metereological data.  76 

2. STUDY SITE 77 

The explored pocket coastal lagoon (Louro) is located in a small embayment at the northern margin 78 

of the Ría de Muros entrance, at the Atlantic coast of Galicia, NW Iberia (Figure 1). Louro lagoon is a 79 

pocket lagoon and is influenced by both fresh and saline waters (Cobelo-García et al., 2012). It is an 80 

important habitat for numerous plant and animal species, and is included in the Natura 2000 network of 81 

the European Union (EU). 82 

The lagoon is a very shallow water body with a flat bottom bed (Figure 1). It has a surface area about 83 

0.25 km2, nearly 0.62 km-long and around 0.34 km wide. Reed beds characterize the marginal areas of 84 

the lagoon, where the sediment is mostly sand and silt. Sandy sediments characterize the central area, 85 

while muddy sediments dominate the inland sector. The communication with the open sea usually 86 



happens through barrier breaching and inlet formation during winter. The inlet opens at the westernmost 87 

part of the lagoon (Figure 1D). A 2 m-depth channel with an average width of 15 m cuts the barrier 88 

perpendicular to the shoreline just after the barrier is breached (González-Villanueva, 2013; Pérez-89 

Arlucea et al., 2011). Over time, the channel shifts to the north with its long axis becoming parallel to 90 

the shoreline until its closure (Almécija, 2009).  91 

The lagoon is separated from the open sea by a 300-600 m-wide and 1500 m-long sand barrier, which 92 

anchors to rocky outcrops at both ends (Figure 1). The sandy barrier hosts a dune ridge fragmented by 93 

aeolian corridors running across the dune from the upper part of the beach. The dune-ridge reaches 94 

maximum heights of 15 m above the Mean Sea-Level in Alicante (MSLA; topographic Spanish Zero, 95 

located 1.893 m above mean sea level at Coruña maritime port; see www.puertos.es for more 96 

information). High waves come from W to NW directions, with higher values (more than 8 m) during 97 

winter (Figure 1C). The NW-SE orientation of the system protects the barrier from the direct impact of 98 

these energetic waves. The beach morphology oscillates  between two morphodynamic states i.e., 99 

intermediate and reflective morphologies from summer to winter conditions respectively (Almécija et 100 

al., 2009). In addition, Almécija et al. (2009) demonstrated that the presence offshore of a shallow zone 101 

provokes changes in the wave approaching to the coast and a wave divergence with an important energy 102 

loss in the northern area of the sand barrier.  103 

 104 

http://www.puertos.es/


 105 

Water-level oscillations within the lagoon are mostly seasonal and related to catchment runoff 106 

(Cobelo-García et al., 2012; González-Villanueva, 2013; Pérez-Arlucea et al., 2011). Louro catchment 107 

area is 4.57 km2, with a mean basin slope of 0.19 m/m. The areal percentage of plutonic rocks in the 108 

catchment area is 12.58 %, metamorphic rocks 18.83 % and sedimentary (quaternary) rocks and soil 109 

68.59 %. Natural scrubland, abandoned agricultural plots and sparse trees complete the landscape of the 110 

catchment areas. The drainage network has a marked torrential regime except for the main tributary, 111 

which is the only one with a seasonal water discharge, despite its reduced flow distance of 3.85 km. 112 

Louro is located at the southern limit of the North Atlantic storm track. This region is particularly 113 

sensitive to interannual shifts in the trajectories of the mid-latitude cyclones, which are controlled by 114 

 

Figure 1. Location of field site. (A): Location in the framework of the Iberian Peninsula. (B): Position of Louro 

coastal lagoon, SIMAR node and meteorological station. (C): Significant wave height (Hs) and period (Tp), at 

SIMAR 3009017 point. (D): Aerial imagery of Louro coastal barrier lagoon (2004), with MDT of the barrier and 

lagoon derived from LiDAR data (2009). The grey dots indicate the location of the water-level loggers. PTsl: sea 

level record; PTwl: lagoon record; P1 and P2 are the locations for the points used to extract wave characteristics 

from SWAN propagation model. 



the North Atlantic Oscillation -NAO- (Goodess and Jones, 2002; Osborn et al., 1999). The rainfall in 115 

the study area is highly variable, with an average rainfall ranging from 600-700 mm in winter to less 116 

than 100 mm in summer. The average annual rainfall is close to 1700 mm (Martínez Cortizas and Pérez 117 

Alberti, 1999). Previous works suggested that precipitation in this region is strongly modulated by the 118 

NAO, with more humid conditions during winters corresponding to low and negative NAO index values 119 

(Rodriguez-Fonseca and de Castro, 2002; Trigo et al., 2008). 120 

3. MATERIAL AND METHODS 121 

Two water-level loggers were deployed at the study site to monitor water-level oscillations (Figure 122 

1, Table 1). Available topographic data (Table 1) was obtained from two high-resolution DTMs, 123 

measured at low and high lagoon water-levels. These data were used to examine the morphology of the 124 

barrier and the bottom topography of the lagoon. The first was surveyed on 19/09/2009, with a 125 

Terrestrial Laser Scanner (TLS) Class-1 TSL-RIEGL model LMS Z-390i while the second was surveyed 126 

by the IGN on 8/03/2011 using an airborne LiDAR (downloaded from http://pnoa.ign.es/coberturalidar). 127 

The DTM were constructed based on the Geodetic Reference System ED50 and were represented on the 128 

UTM mapping projection (UTM zone 29N). All heights were referred to MSLA. 129 

Metocean data were also examined and jointly analyzed with in-situ water levels: (i) meteorological 130 

data (i.e. rainfall and evaporation parameters) from a near coastal meteorological station -Corrubedo 131 

station (Figure 1) - (downloaded from http://www.meteogalicia.gal/web/index.action), and (ii) wave 132 

climate data from one node of the SIMAR dataset (courtesy of Puertos del Estado), which includes 133 

hindcast winds, sea-level and waves starting in 1958 (Figure 1, Table 1).  134 

Table 1. Summary of the available data. 

http://pnoa.ign.es/coberturalidar
http://www.meteogalicia.gal/web/index.action


Available data 

Type of data Units 
Temporal resolution 

or accuracy 
Temporal range Data source 

Rainfall l/m2 10 min mean 10/2009-7/2012 Meteogalicia 

Evaporation l/m2 24 hour mean 10/2009-7/2012 Meteogalicia 

Offshore waves   

(H, T, Direction) 
(m, s, °) 

3 hour mean 10/2009-12/2011 
Puertos del Estado 

1 hour mean 12/2011-7/2012 

Sea level M 5 min mean 10/2009-1/2012 Survey-Pressure transducer 

Lagoon water-level M 5 min mean 10/2009-7/2012 Survey-Pressure transducer 

DTM’s  M H: 3mm V:3mm 19/09/2009 Survey-TLS 

Topographic data M H: 8mm V:15mm 30/01/2010 Survey- DGPS-RTK 

Topographic data M H: 8mm V:15mm 05/02/2010 Survey-DGPS-RTK 

DTM’s M H: 0.15m V:0.2m 08/03/2011 LiDAR- IGN 

Topographic data M H: 8mm V:15mm 29/09/2011 Survey-DGPS-RTK 
 

3.1.  Lagoon water-level changes 135 

 Lagoon water-level monitoring 136 

One logger was located in the lagoon to register lagoon water-levels (Lwl; Figure 1). Water 137 

oscillations were recorded at 5 min time intervals, for 34 months (Table 1) with Water-level logger 138 

models Seabird SBE 39 and AQUALogger 520 PT. The elevation of the logger was measured, once 139 

deployed, using a Trimble DGPS-RTK. Observations were therefore referred to the MSLA by 140 

referencing to the corresponding water logger elevation. Water-level measurements were corrected for 141 

variations in barometric pressure using the data downloaded from the closest meteorological station 142 

(Figure 1). 143 

Corrected data were used to determine the timing of lagoon natural opening, the duration of the active 144 

inlet phase, inlet sealing and the associated water-level thresholds. In addition, these data allowed us to 145 

identify the parameters that can characterize the lagoon openings: (i) the plateau phase, which 146 

corresponds to the time (in hours) between the moment when the lagoon reaches its highest water-level 147 

and the breach, and (ii) the water-head (or hydraulic head) difference (in meters), which was calculated 148 

as the difference between the lagoon water-level and the water-level in the nearshore at the opening. 149 

 Rainfall regime impact on lagoon water-level 150 

The relation between Lwl and the rainfall was evaluated using the accumulated rainfall (Rf) for the 151 

periods when the lagoon was closed. First the periods with more intense and frequent rainfalls or wet 152 

seasons were identified, including also the periods during which the lagoon opens. In addition, the water 153 

storage capacity of the lagoon was obtained using the bathymetry to translate lagoon water-levels into 154 

water-volumes (Lv). Therefore, the relation between Lv and Rf was obtained, which can be applied for 155 



any situation knowing the accumulated rainfall. In addition, the obtained expression can only be applied 156 

after a certain level in the lagoon is reached in order to allow direct comparison between events (Lmwl). 157 

To select the latter, we have imposed criteria to normalize all the data that is defined by local sea water 158 

levels:  159 

(1) 𝐿𝑚𝑤𝑙 = 𝑀𝑊 + 1
2⁄ (𝑀𝐻𝑊 − 𝑀𝑊) 160 

where MW is sea mean water-level and MHW is the high sea mean water-level 161 

3.2. Nearshore water-levels 162 

 Tidal regime 163 

The tidal regime was monitored using a logger located at the beach nearshore (Figure 1). Water 164 

oscillations at the nearshore were recorded at 5 min time intervals, for 28 months (Table 1). We used 165 

the same models of water-level loggers as previously described for the Lwl monitoring. The same 166 

topographic and barometric corrections used for the lagoon water-level record were applied to these 167 

data. The corrected record was analyzed using the script World Tides (Boon, 2004) for MATLAB 168 

software. This MATLAB routine calculates the tidal curves and residuals (storm surges) using the 169 

highest astronomical tide (HAT) and the lowest astronomical tide (LAT). Different reference tidal-levels 170 

were obtained from the data record: MW, MHW and mean low water-level (MLW). Identified short 171 

gaps in the observed sea-level record due to failures in the logger were corrected by including the 172 

predicted tide level obtained with the same MATLAB routine. The tidal height (Th) at identified lagoon 173 

openings were extracted from the record. 174 

 Runup 175 

The runup formulation (equation 2) proposed by Stockdon et al. (2006) was chosen to estimate the 176 

2% exceedance value of runup peaks (R2). Among the available formulas for runup calculation, this one 177 

was selected because can be applied to intermediate or reflective beaches. Indeed, under storm 178 

conditions (reflective beaches, with ξ0>1.25), where the swash is dominated by incident energy, the 179 

equation 2 can be simplified into the equation 3. 180 

 (2) 𝑅2 = 1.1 (0.35 𝛽𝑓√(H0L0) +
√[𝐻0𝐿0(0.563𝛽𝑓

2+0.004)]

2
) or  (3) 𝑅2 = 0.73 𝛽𝑓√(H0L0); for ξ0 > 1.25 181 



where βf is the beach-face slope, H0 and L0 are the deep-water wave height and length, respectively. The 182 

ξ0 is a non-dimensional surf similarity parameter or Iribarren number (Battjes, 1974) and is defined by 183 

the equation 4: 184 

 (4) ξ0 =
𝛽𝑓

√(H0L0)
 185 

The beach morphology falls into the reflective type during winter conditions (Almécija, 2009) with 186 

an average winter slope of 0.1, which was used to calculate the Iribarren number and the runup values. 187 

Bwl at the breaching moment was obtained by the addition of the measured tidal-level (Th) and the 188 

calculated runup levels (R2). 189 

To estimate runup levels at the beach we have used the wave data from a hindcast time series 190 

extracted from the SIMAR-3009017 node, located offshore of Louro (Figure 1), for the time period 191 

overlapping the record of the water loggers. Because of the orientation and irregular shape of the coast, 192 

offshore waves have been propagated onshore using a bathymetric grid with the best available data with 193 

a 50m resolution. The SIMAR wave data were used to feed the SWAN (Simulating WAves Nearshore) 194 

model (Booij et al., 1999) to simulate the nearshore wave climate. The model was run in non-stationary 195 

mode using one computational grid based on the bathymetric grid and was forced along its open 196 

boundaries by the integral parameters of the wave time series: Hs, Tp and θp. The spectral domain was 197 

discretized with 31 frequency bins (distributed logarithmically between 0.04 and 1), with a directional 198 

spreading coefficient of 3. Wave parameters (Hs, Tp and θp) were extracted from 2 locations alongshore 199 

the Louro embayment at 12 m depth (Figure 1).  200 

To ensure the correct application of equation 2, the simulated nearshore waves were reversed shoaled 201 

to deep-water using the linear wave theory, and assuming a shore-normal approach and the unrefracted 202 

wave height and period as suggested by Stockdon et al. (2006). 203 

A similar approach was used to estimate a range in the elevation of the sandy barrier (Bhmin - Bhmax) 204 

by assuming that Bwl during antecedent spring-high tides is a proxy for beach berm elevation. The latter 205 

is in turn assumed as representative of the barrier dimensions at the area where the barrier breaches, 206 

which in turn lacks any dune building.  207 



4. RESULTS 208 

4.1. Lagoon water-levels 209 

Figure 2A shows the water-level in the lagoon. The basal lagoon water-level was around 2 m 210 

(MSLA), which was reached during the dry seasons and when the lagoon was opened. In general terms, 211 

when the wet season starts, Lwl gradually raises 2 m, reaching values above 4 m MSLA (Figure 2A). All 212 

recorded openings at Louro were natural; they had not been artificially forced or initiated. Opening 213 

events were easily recognized within the lagoon water-level record as sharp elevation drops (1-2 m), 214 

occurring in a short period of time (8-12 hours). The maximum level recorded in the lagoon before 215 

barrier breaching was 4.72 m in March 2010 (Figure 2A, Table 2-event 3-). However, the maximum 216 

water-level recorded in the lagoon was 4.83 m in February 2011 (Figure 2A-star-, Table 2-event *-), 217 

which did not trigger a breaching but showed a gradual water-level lowering that spanned over few 218 

months in the following spring and summer.  219 

When breaching occurs, and the lagoon communication opens, water fluctuations driven by tides are 220 

propagated inside the lagoon, showing a small time lag relative to the nearshore water-level (Figure 2A). 221 

The number of days that the lagoon remained open ranged between 7 and 29 days (Table 2). Once the 222 

connection with the open sea became more restricted, tidal fluctuations in the lagoon were flattened, 223 

tending to disappear.  224 



 

Figure 2. (A) Water-levels obtained from the loggers: observed, predicted and residual sea-level and water oscillations in 

the lagoon (red close and blue open). (B) Rainfall and evaporation record from the Corrubedo meteorological station during 

the same period. Grey bands show the wet seasons 1 to 3 (October to April) during the test period. Black arrows indicate 

the most significant events of inlet opening: 1 to 7. Star symbol corresponds to high water-levels into the lagoon which not 

ended in a barrier breaching. (C,D,E) Wave height (m), period (s) and direction (º) record of offshore waves obtained from 

the SIMAR node and at the points 1 and 2 from the SWAN model. 

 225 



 226 

 227 

 228 

Table 2. Detailed information of water-levels into the lagoon, rainfall, tides and waves for opening events. Initial water-levels in the lagoon are established as the minimal water-level before a 

breach (Lmwl). Beach berm values (minimal and maximum) are calculated by adding to the height of the spring-high tides values the corresponding runup values before a barrier beach. The 

plateau phase corresponds to the time (in hours) between the highest water-level reached by in the lagoon and the breach. The barrier recovery time is referred to the time between the closing 

of the inlet. The next opening is given in days. The water-head (or hydraulic head) difference (in meters) was calculated as the difference between the water-level in the lagoon and in the barrier. 

Accumulated rainfall corresponds to the rainfall drop lapsing between the moments that the lagoon reaches the Lmwl and a barrier breaching event. The event marked as * corresponds with a 

maximum water-level not leading to an opening. Different font colors in the events correspond to different wet seasons.  

Event 

Lagoon water-level (m)/Date 

Bhmin-

Bhmax 

(m) 

Plateau 

phase 

(h) 

Days 
open 

Barrier 

recovery 
time 

(days) 

Characteristics at barrier breaching 

Initial level 

(m) 

Breach level 

(m) 

Water-

head 
(m) 

Accumulated 

rainfall (l/m2) 

Water-
level at 

the beach 

(m) 

Wave 

direction 
(º) 

Wave 

height 
(m) 

Tidal 

level 
(m) 

Tidal stage Tidal type 

Tidal 

range 
(m) 

1 
2.91 

(14/11/2009) 

4.14 

(2/12/2009) 
4.1-5.1 15.5 7 >76 -0.19 153 4.33 239-WSW 1.52 3.13 

Rising, close 

to high 

Close 

spring 
2.98 

2 
2.91 

(28/12/2009) 

3.89 

(1/1/2010) 
3.9-4.1 5.8 13 4 0.83 40.8 3.06 242-WSW 2.57 1.38 

Falling, close 

to low 
Spring 3.73 

3 
2.91 

(31/1/2010) 

4.72 

(2/3/2010) 
4.2- 5.1 21.8 15 48 1.09 162.1 3.63 232-SW 1.17 2.80 

Rising, close 

to high 
Spring 4.11 

4 
2.91 

(18/3/2010) 

3.49 

(30/3/2010) 
3.7-4.8 --- 29 13 -2.03 78.5 5.51 231-SW 2.57 3.49 Close high Spring 4,29 

5 
2.91 

(8/10/2010) 

4.62 

(3/12/2010) 
4.6- 4.8 46.3 13 229 2.93 261.6 1.69 239-WSW 0.64 1.05 

Falling close 

to low 

Close 

spring 
2.55 

6 
2.91 

(22/12/2010) 
3.57 

(6/1/2011) 
4.5-4.8 --- 11 19 -1.28 81.1 4.84 223-SW 2.23 3.55 

Rising, close 
to high 

Spring 3.07 

* 
2.91 

(3/2/2011) 

4.83* 

(25/2/2011) 
5.2-5.3 153 --- --- 1.15* 105.9 3.68* 230*-SW 1.19* 2.48* Rising* Neap* 1.65 

7 
2.91 

(3/11/2011) 

4.43 

(16/12/2011) 
4.2-5.1 61.2 20 344 1.13 265.8 3.30 233-SW 2.78 1.3 Low 

Close 

neap 
2.12 

 



4.2. Impact of rainfall on lagoon water-levels 229 

Figure 2B shows rainfall and evaporation data for the same time interval. From these data, we could identify 230 

three wet seasons during the monitoring program: Wet1 extended from October 2009 to April 2010, Wet2 231 

from October 2010 to April 2011, and Wet3 between October 2011 and April 2012. The total rainfall decreased 232 

from Wet1 to Wet3. Seven opening events were identified; 4 events during Wet1, 2 events during Wet2, and 233 

only one event during Wet3. The first opening event of each wet season was characterized by Lwl above 4 m 234 

(Table 2) while consecutive openings within a same season were below 4 m, which means that the time interval 235 

for barrier recovery would be relatively short; openings 2, 4 and 6 (Table 2). 236 

Figure 3A shows the relationship between Lwl and the corresponding Lv for Lwl higher than 2.91 m (Lmwl 237 

obtained using equation 1). The relation (with a r2 value of 0.99) between these variables was: 238 

(4)  𝐿𝑣 = 259641𝐿𝑤𝑙 − 643018        239 

Figure 3B shows Lv versus Rf for each opening event between the moments in which the imposed criteria 240 

is attained (Lwl=Lmwl) and the breaching moment. The relation (with a r2 value of 0.75) between these variables 241 

can be described with by the following regression: 242 

(5)  𝐿𝑣 = 1211𝑅𝑓 + 1.77𝑒+05                          243 

 244 

Combining equations 4 and 5 we can obtain the relation between the rainfall and the lagoon water-level: 245 

(6) 𝐿𝑤𝑙 =
(1211𝑅𝑓 + 820018)

259641
 246 

 

Figure 3. (A) Lagoon water volume in m3 versus lagoon water-level in m (black points) and the linear regression (blue line) (B) 

Lagoon volume in m3 obtained for each event from 2.91m of water-level in the lagoon until the opening level versus accumulated 

precipitation for each event with the same timing (black points) and the linear regression (blue line). 



To validate this relation, we have used the values of rainfall in our study area and the recorded lagoon 247 

water-levels. Figure 4 represents the Lwl, recorded and predicted using equation 6, at the barrier breach. The 248 

predicted values are close to the recorded values (less than 0.3 m of difference) with the exception of the events 249 

2 and 3, having a difference of 0.5 and 0.8 m respectively. 250 

 

Figure 4. Lagoon water-level in m for each opening event. Black points represent the recorded water-levels and the grey points 

the predicted water–levels using the equation 6. 

 251 

4.3. Nearshore water-levels 252 

Figure 2A shows the complete record of sea level during the monitoring program. The mean sea water-253 

level (MW) was 1.99 m above MSLA; close to the basal level recorded in the lagoon (i.e. 2 m). The obtained 254 

mean low water-level (MLW) was 0.19 m while the mean high water-level (MHW) was 3.83 m above MSLA. 255 

However, sea level reached values of 4.4 m during storm events (Figure 2A). Identified openings occurred at 256 

spring tides or close to spring tides with the exception of opening 7, which took place close to neap tides. Four 257 

of the recorded openings occurred close to the high tide (openings 1, 3, 4 and 6) while the other three (opening 258 

2, 5 and 7) happened close to the low tide (Table 2). 259 

Figures 2C, D and E show the wave parameters obtained from the node SIMAR-3009017 and the 260 

propagated waves with SWAN model at points 1 and 2 (Figure 1). The results show that higher wave heights 261 

came from SW, suggesting the occurrence of storms recorded during the wet seasons. Waves from SW impact 262 

the beach directly while waves from westerly and northerly directions are transformed before reaching the 263 



beach due to wave refraction. The effect of refraction is not linear and becomes higher as the offshore waves 264 

approach NW, reaching a maximum difference of 50º between offshore and local wave direction (e.g. 343º -265 

NNW- transformed to 290º-WNW-). The wave height and period were reduced by 30% and 20% respectively. 266 

Differences between the nearshore points 1 and 2 were only observed on waves above 3m, suggesting a higher 267 

effect as the waves enter the northern-end of the bay.  268 

The minimum and maximum values estimated for barrier elevation (Bhmin and Bhmax) before the openings 269 

are presented in Table 2, ranging from 3.7 to 5.3 m. The latter were associated with local waves arriving 270 

parallel to the beach or with low angles (≈225-230º) and high periods (>8 s), promoting onshore sediment 271 

transport. 272 

In the same way, Bwl at the openings were calculated and are presented in Table 2. The estimated values of 273 

Bwl for four of the identified openings were lower than the recorded Lwl (openings 2, 3, 5 and 7), resulting in a 274 

positive water-head difference. Alternatively, the other three cases estimated Bwl values were higher than Lwl 275 

(openings1, 4 and 6), producing a negative water-head difference (Table 2).  276 

4.4. Processes and data integration 277 

Barrier breaching was tentatively parameterized using the relation between the Lwl (lagoon water-level); Bh 278 

(Barrier height) and Bwl (barrier water-level). Wave climate, rainfall and the tidal range modulate the selected 279 

parameters. Indeed, the water level in the lagoon can be predicted using the accumulated rainfall, while the 280 

elevation of the berm can be estimated using the local wave climate and nearshore water level. In addition, the 281 

relation between these parameters determines the mechanism that will induce barrier breaching and could be 282 

used to predict the timing, the direction of the lagoon openings and, therefore, the type of opening. Three types 283 

of openings have been identified: (i) Lw-type or breaching triggered from the lagoon, (ii) Sw-type or breaching 284 

triggered from the sea and (iii) Mx-type or mixed lagoon-sea opening. 285 

(i) Lw-type. Three of the identified events were included into this type of event: openings 3, 5 and 286 

7 (Figure 5, event 5). Lw-type was associated with the highest recorded water-levels in the lagoon, 287 

ranging from 4.43 to 4.72 m, and highest values of accumulated rainfall with values up to 288 

268.5 l/m2. The high lagoon water-levels were maintained between 21.8 and 61.2 hours, what we 289 

have named as the plateau phase (Table 2). This type was also associated with a strong barrier, 290 

with more than 48 days to recover from a previous opening (Table 2). In addition, the water-head 291 



difference (Table 2), always showed positive values greater than 1 m, generating a gradient 292 

between the lagoon and the sea side. Lw-types were preferably happening with low waves heights 293 

and spring tide, only the event 7 occurred with high height waves but at low and close to neap 294 

tides (Table 2). We observed that for all these cases the relation Lwl ≥ Bhmin > Bwl was filled. 295 

 

Figure 5. Example of Lw type (event 5). (A) lagoon water-level and sea-level, (B) rainfall and (C, D, E) waves previous, during 

and after the opening.. 

 296 

(ii) Sw-type. Openings 4 and 6 (Figure 6, event 4) were classified as Sw-type. In both cases, the 297 

opening occurred shortly after beach berm reconstruction, following barrier breaching within the 298 

same wet period. The water-level inside the lagoon and the accumulated rainfall was lower than 299 

for the Lw-type, with values circa 3.5 m of water-level and circa 80 l/m2 for rainfall (Table 2). 300 

Estimated beach berm elevations before the opening were similar or lower than the values 301 

obtained for the Lw-type (see Table 2). However, the barrier recovery time in these cases was less 302 

than 20 days (Table 2), and the SW waves reached the beach at an oblique angle to the shoreline. 303 



These waves were previously documented as responsible for the beach-face erosion in the study 304 

area, provoking the lowering and narrowing of the barrier (Almécija et al., 2009). Water-head 305 

differences were negative and greater than 1 m for these cases, generating an inverse gradient 306 

between the lagoon and the ocean. During these events, the plateau phase was not present. Sw 307 

type events developed during spring tides, coincident with high tides and high SW waves 308 

promoting high runup values (see Figure 2 and Table 2). For these cases the observed relation 309 

between the three variables was Bwl ≥ Bhmax > Lwl. 310 

 

Figure 6. Example of Sw type (event 4). (A) lagoon water-level and sea-level, (B) rainfall and (C, D, E) waves, previous, during and after 

the opening. 

 311 

(iii) Mx-type. This type represents the openings 1 and 2 (Figure 7, event 2) that could not be easily 312 

grouped within the Lw- and Sw-types. The water-level inside the lagoon was relatively high 313 

(around 4 m, Table 2). Yet, the water-head difference in this type was positive or negative but 314 

lower than 1 m. Moreover, like in the Sw type, the days before the opening were characterized by 315 

high SW waves, with high erosion potentials to erode the beach berm, inducing barrier breaching. 316 



Under such conditions, it is expected that the weak barrier would not be able to store high water-317 

volumes in the lagoon, maintaining the plateau phase only for less than 16 hours. For that type of 318 

opening, the relation between the variables was Lwl ≈ Bhmin < or > Bwl. 319 

 

Figure 7. Example of Mx type (event 2). (A) lagoon water-level and sea-level, (B) rainfall and (C, D,E) waves previous, at and after the 

opening. 

 320 

If the water-levels in the lagoon or at the barrier do not reach the minimal barrier crest height the barrier is 321 

not breached, even with high water head differences (event *, Table2). For this cases the situation is defined 322 

by Lwl < Bhmin > Bwl. 323 

Once open, the lagoon can maintain its direct connection with the open sea for a variable length of time, 324 

ranging from 7 to 29 days. The duration of this phase does not show a clear relation with the lagoon water-325 

level (Table 2). In turn, inlet longevity at Louro seems to be regulated by the rainfall regime and wave climate 326 

after the opening. The identified closure events were coincident with a cessation of rain, which would explain 327 

the reduction of the water input, and the incidence of constructive waves characterized by higher period values. 328 

The latter would promote the onshore sediment transport and the development of high berms with the 329 



subsequent barrier growth and widening. In some cases, barrier sealing was interrupted by high erosive waves, 330 

and a slight amount of rainfall; this was observed clearly in opening 2 and 4 (Early-January 2010-Figure 7- 331 

and Mid-April 2010- Figure 6). 332 

5. DISCUSSION  333 

The ultimate objective of this work was to monitor water-level oscillations within an intermittently open 334 

coastal lagoon and the adjacent nearshore, providing a continuous medium-term (> 2 years), high temporal 335 

resolution record of water-level oscillations to understand natural breaching processes and evaluate the role of 336 

the major forcers (i.e. rainfall regime or wave climate) during these events. The methodology selected to 337 

achieve this purpose allowed barrier breaching and closure identification through the occurrence of water-level 338 

changes in the lagoon.  339 

One or other of the identified opening types (Lw-, Sw- and Mx-types) have been previously described at 340 

other case studies. Yet, in most of the cases, references to breaching processes at lagoons usually focus on one 341 

of these types, suggesting a persistent relation between sites and types of opening; i.e. openings from the lagoon 342 

side (Joseph, 1958; Kraus et al., 2008; Rich and Keller, 2013; Rijkenberg, 2015), which are comparable to our 343 

Lw-type, versus breaching induced by high waves (Penland and Suter, 2011; Pierce, 1970; Vidal-Juárez et al., 344 

2014), comparable to our Sw-type. All examples found in the literature suggest common processes to explain 345 

barrier breaching with independence of site-specific features such as catchment area or lagoon basin 346 

dimensions.  347 

At Louro, barrier breaching induced from the land side (lagoon) results from water-level rise in the lagoon 348 

as a consequence of intense rainfall and river discharges, in this case under torrential regime. The natural 349 

breaching occurs when Lwl ≥ Bhmin > Bwl and after the high lagoon water-levels are maintained for a long period 350 

of time, and the water-head value is above 1 m. Under these circumstances we may expect two processes 351 

leading barrier breaching as described by Kraus and Wamsley (2003): (i) overflow from the lagoon side, and 352 

(ii) seaward seepage generated by the groundwater gradient associated to the difference in water elevation 353 

between the both sides of the barrier, contributing to liquefaction and removal of the barrier sand. The 354 

estimated berm elevations suggest that a combination of both processes should lead to barrier breaching in 355 

Louro. In fact, we have found that barrier breaching in Lw- and Mx-types, only occurs when the water-level in 356 

the lagoon equals or exceeds the minimum estimated barrier elevation, which in turn maximizes the potential 357 



seepage to compensate the generated gradient of water elevation between the lagoon and the sea side of the 358 

barrier. Indeed, the event observed in February 2011 (event *, Figure 2), despite a clear positive and large 359 

water head difference, did not lead to an opening because recorded Lwl were below Bhmin and therefore did not 360 

triggered a lagoon overflow. 361 

Breaching processes generated by overflow from the lagoon have been previously documented along the 362 

Californian coast (Joseph, 1958; Kraus et al., 2002), the southeast coast of Australia (Gordon, 1990; 363 

Rijkenberg, 2015), the south of Brazil (Figueiredo et al., 2007) and along the southeast African coast (Smith 364 

et al., 2014; Zietsman, 2004). For all those cases, high and wide barriers were described, usually backed by 365 

lagoons of variable sizes, with the exception of the examples at the southeast African coast, which correspond 366 

to narrow estuarine beaches, developed at the mouth of small rivers. Alternatively, breaching processes 367 

generated by sediment liquefaction have been usually observed at low and narrow barriers due to the high 368 

water-level of the groundwater (Kraus and Wamsley, 2003; Pierce, 1970).  369 

Conversely, openings induced from the sea side of the barrier (Sw-Type) were linked to high values of wave 370 

setup and runup, which in turn contributed to the inundation of the weaker or lower areas of the barrier and 371 

subsequent barrier breaching. This type of breaching is more frequently observed and is associated to low 372 

barrier islands and low lying barrier spits (Gordon, 1990; Kraus et al., 2002; Kraus and Wamsley, 2003; 373 

Penland and Suter, 2011; Pierce, 1970; Vidal-Juárez et al., 2014). In fact, Sw-type have been identified when 374 

Bwl ≥ Bhmax > Lwl and overwash appears to trigger the breaching through the inundation of a barrier section 375 

with lower topography, while the impact of the waves increased sediment mobilization and barrier erosion. 376 

The recorded SW waves in this type of opening can generate high runup values, which in turn suggest the 377 

onset of inundation regimes during the openings as suggested by the application of the storm impact scale 378 

classification proposed by Sallenger (2000). A similar situation occurs when Lwl ≈ Bhmin < Bwl (Mx-type 379 

breaching, opening 1). However, the values of runup for this case did not exceed the estimated Bhmax and thus, 380 

cannot explain barrier breaching by itself, suggesting the combined effect of waves weakening the barrier and 381 

the similar values of water-level in the lagoon side and the Bhmin. In addition we can expect that the seaward 382 

seepage could contribute to a great extent to barrier breaching also to the latter breaching type, if generated 383 

groundwater gradients are considered for all cases. Indeed, a recent experimental work by Turner et al. (2016) 384 

had proved how seaward seepage fluxes can be generated under different circumstances, which in turn are 385 



coincident with the ones exemplified by Lw-, Sw- and Mx- breaching types. 386 

The above suggests that Louro lagoon mimics breaching processes identified worldwide. However, we 387 

have also found specific differences that should be highlighted. Revised literature, dealing with openings 388 

driven from the lagoon side of the barrier, relate the timing of barrier breaching to low tides, when the water-389 

head difference is largest (Kraus et al., 2008; Rich and Keller, 2013; Rijkenberg, 2015). However, at Louro 390 

this type of breaching seems to occur when the hydraulic gradient lagoon-sea is positive, independently of the 391 

tidal elevation; Lw-type openings occurred close to the high, close to low or in low tide. In addition, it is worth 392 

noticing that our case is one of the few showing natural, instead of human-induced, breaching. The latter is 393 

usually provoked at low tides to maximize lagoon drainage and avoid hinterland flooding. Other point to 394 

highlight is the fact that our records indicate that Lw-type only happens when the high water-level inside the 395 

lagoon is maintained over time (long plateau phase), yet the actual breaching occurs only if the values of water-396 

head difference are above1 m. Other examples described in the literature stated that the influence of the water-397 

head difference is more important than the forcing for the actual rain (Rijkenberg, 2015), but in our case the 398 

torrential nature of the river provokes that the water-head is directly due to the persistence of rainfall. Indeed, 399 

the water-level records at Louro suggest that the greatest water-head differences only provoke barrier 400 

breaching if the rain extends time enough to ensure barrier overflow from the lagoon. Per contra, if rainfall 401 

stops the barrier might not be saturated and therefore breaching might be prevented (see event *, Figure 2 and 402 

Table 2).  403 

As stated in the results, the lagoon can maintain its connection with the open sea for a variable period of 404 

time. However, this study contrast with previous works concluding that growing and stability of the channel 405 

from the lagoon side mainly depends on the strength of the ebb-flow created by the volume of water stored 406 

within the lagoon prior to openings (Cruces et al., 2009; Fortunato et al., 2014; Stretch and Parkinson, 2006). 407 

This response is not observed in Louro, where the lifespan of the inlet seems to depend on the rainfall regime 408 

and the wave climate. Sealing processes dominated by wave climate have been reported at other sites (Costas 409 

et al., 2005; Dodet et al., 2013; Fortunato et al., 2014; Kraus et al., 2008). However, in those examples the 410 

actual conditions promoting the closure are not clearly explained; it is simplified as a natural trend to close by 411 

wave driven sediment transport when the outflow is sufficiently reduced. In this regard, it has been suggested 412 

that inlet closure is at a great extent promoted by the onshore or longshore transport of the sediment originally 413 



ejected by the breaching. The role of the onshore transport was also described in the closure of seasonally open 414 

small tidal inlets by Ranasinghe and Pattiaratchi (2003) who demonstrated that onshore transport of material 415 

can induce closure if the longshore sediment transport rate is small or inadequate.  416 

Finally, we have explored the relation between the number of openings per year and the corresponding 417 

local climate (Figure 2), finding that the number of openings decreased (increased) with the decreased 418 

(increase) of the annual rainfall and with the decreased (increased) occurrence of erosive high and SW waves. 419 

Climate projections for the Western Iberian region predict an upward trend of the NAO towards more positive 420 

values and a greater frequency of warm and dry winters in the future (López-Moreno et al., 2011), leading to 421 

a significant decline of the annual precipitation (Sáez de Cámara et al., 2015; Trigo et al., 2004; Trigo et al., 422 

2008). Water-level monitoring at Louro provides supporting evidences that the lagoon waters may not be 423 

renewed if rainfall is low or highly intermittent. If so, the system functionality may be negatively affected due 424 

to the eutrophication, as water renewal can be dramatically reduced. Previous works documented that artificial 425 

actions (barrier breaching) avoid or mitigate this situation enhancing system functionality (del Barrio 426 

Fernández et al., 2012; Smith, 2003). However, if these actions are not well addressed the consequences for 427 

the lagoons can be negative instead (De Decker, 1987; Dye and Barros, 2005; Netto et al., 2012). The present 428 

work shows an example on how a monitoring program may contribute to the implementation of appropriate 429 

management practices, through the definition of the relation between the principal variables governing barrier-430 

breaching processes under changing environmental conditions. 431 

 432 

6. CONCLUSIONS 433 

In this work we present a monitoring program of water-level oscillations within Louro lagoon, a small 434 

coastal lagoon, included in the Natura 2000 network of the EU, based on the analysis of a dataset expanding 435 

more than 2 years. The monitoring included water-level observations in the lagoon and seaward. These datasets 436 

are useful to locate accurately the opening timing and to establish the variables playing at breaching time with 437 

climatic, wave and topographic data. The methodology proposed in this paper allows us to understand this 438 

process at medium-term time scales. However, the co-occurrence of climate related processes (such as heavy 439 

rainfall or sea storms) adds uncertainty in the identification of drivers during breaching. To account for those 440 

uncertainties, we have first identified the events and then used additional data; i.e. topography, wave 441 



parameters and rainfall to parametrize the variables responsible for lagoon opening.  442 

We can parametrize three principal variables responsible for triggering the natural openings: Lwl, lagoon 443 

water-level; Bh, barrier height and Bwl, beach water-level.  444 

We found that each variable is dependent of other processes, in that way, the Lwl is highly modulated by the 445 

rainfall regime, Bh is dependent of the wave climate (runup) and the Bwl depends on the tidal regime (tidal 446 

height) and wave climate (runup).  447 

Three types of openings were identified in function of the relation between these three variables: 448 

• Lw-type, when Lwl ≥ Bhmin > Bwl; opening from the lagoon side, by lagoon water overflow. 449 

• Sw-type; when Bwl ≥ Bhmax > Lwl; opening from the sea side, by wave overwash or lagoon 450 

inundation 451 

• Mx-type; when Lwl ≈ Bhmin < or > Bwl; the opening is triggered by a combination of processes from 452 

both sides. 453 

However, when Lwl < Bhmin > Bwl; there is no opening. 454 

The natural openings are climate modulated, indeed the occurrence of the natural openings are linked to 455 

rainfall regimes. The results suggest that if the projections are right, the study area will tend to register more 456 

frequent warm and dry winters, which in turn will lead to a decrease on the annual precipitation and thus a 457 

reduction on the communication of the lagoon with the open sea. The latter has negative consequences over 458 

the lagoon ecosystem due to the reduction of its functionality. 459 

With this work we prove that understanding how and when a lagoon opens naturally is possible and that it 460 

can support and improve management practices. On the other hand, the quality and temporal extent of the 461 

dataset provides a perfect framework for future work, which should include model calibration of opening and 462 

closure processes. 463 
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