8 research outputs found

    Epidermoid Septal Carcinoma, A Rare and Singular Tumor: Case Report and Review

    Get PDF
    Aim: To describe our casuistic and the way we manage these tumors with their differential behavior. Background: Septal epidermoid carcinoma is a rare tumor that accounts for only 9% of tumors of the nasal fossa. This tumor presents histological, clinical, and prognostic characteristics that differentiate it from other nasal cavity tumors, mainly its anterior location that leads to an early diagnosis in incipient stages. Case description: We present a series of six patients diagnosed with nasal squamous cell carcinoma as well as the clinic referred by the patients to the diagnosis, the associated risk factors, and their clinical and therapeutic approach. Conclusion: The majority of cases (4/6) corresponded to early stages I and II, while the rest were classified as stage IV. In all cases, surgical treatment was performed using different approaches according to location and stage and completing treatment with radiotherapy in five of the six patients. After an average of 40 months of follow-up, all the patients were free of disease. Clinical significance: This paper tries to explain many points of controversy in the management of the tumors of the most anterior areas of the nasal fossa and its differential characteristics with respect to the rest of the tumors in this ar

    The Spanish Infrared Camera onboard the EUSO-BALLOON (CNES) flight on August 24, 2014

    Get PDF
    The EUSO-Balloon (CNES) campaign was held during Summer 2014 with a launch on August 24. In the gondola, next to the Photo Detector Module (PDM), a completely isolated Infrared camera was allocated. Also, a helicopter which shooted flashers flew below the balloon. We have retrieved the Cloud Top Height (CTH) with the IR camera, and also the optical depth of the nonclear atmosphere have been inferred with two approaches: The first one is with the comparison of the brightness temperature of the cloud and the real temperature obtained after the pertinent corrections. The second one is by measuring the detected signal from the helicopter flashers by the IR Camera, considering the energy of the flashers and the location of the helicopter

    Novel genes and sex differences in COVID-19 severity

    Get PDF
    [EN] Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.S

    Novel genes and sex differences in COVID-19 severity.

    Get PDF
    Here we describe the results of a genome-wide study conducted in 11 939 COVID-19 positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (p &lt; 5x10-8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (p =&nbsp;1.3x10-22 and p =&nbsp;8.1x10-12, respectively), and for variants in 9q21.32 near TLE1 only among females (p =&nbsp;4.4x10-8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (p =&nbsp;2.7x10-8) and ARHGAP33 (p =&nbsp;1.3x10-8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, p = 4.1x10-8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (&lt;60 or ≥ 60&nbsp;years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided

    Novel genes and sex differences in COVID-19 severity.

    Get PDF
    Here we describe the results of a genome-wide study conducted in 11 939 COVID-19 positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (p < 5x10-8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (p = 1.3x10-22 and p = 8.1x10-12, respectively), and for variants in 9q21.32 near TLE1 only among females (p = 4.4x10-8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (p = 2.7x10-8) and ARHGAP33 (p = 1.3x10-8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, p = 4.1x10-8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥ 60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided

    Genetic and Genomic Approaches for Adaptation of Grapevine to Climate Change

    No full text
    The necessity to adapt to climate change is even stronger for grapevine than for other crops, because grape berry composition—a key determinant of fruit and wine quality, typicity and market value— highly depends on “terroir” (complete natural environment), on vintage (annual climate variability), and on their interactions. In the same time, there is a strong demand to reduce the use of pesticides. Thus, the equation that breeders and grape growers must solve has three entries that cannot be dissociated: adaptation to climate change, reduction of pesticides, and maintenance of wine typicity. Although vineyard management may cope to some extent to the short–medium-term effects of climate change, genetic improvement is necessary to provide long-term sustainable solutions to these problems. Most vineyards over the world are planted using vines that harbor two grafted plants’ genomes. Although this makes the range of interactions (scion-atmosphere, rootstock-soil, scion-rootstock) more complex, it also opens up wider possibilities for the genetic improvement of either or both the grafted genotypes. Positive aspects related to grapevine breeding are as follows: (a) a wide genetic diversity of rootstocks and scions that has not been thoroughly explored yet; (b) progress in sequencing technologies that allows high-throughput sequencing of entire genomes, faster mapping of targeted traits and easier determination of genetic relationships; (c) progress in new breeding technologies that potentially permit precise modifications on resident genes; (d) automation of phenotyping that allows faster and more complete monitoring of many traits on relatively large plant populations; (e) functional characterization of an increasing number of genes involved in the control of development, berry metabolism, disease resistance, and adaptation to environment. Difficulties involve: (a) the perennial nature and the large size of the plant that makes field testing long and demanding in manpower; (b) the low efficiency of transformation, regeneration and small size of breeding populations; (c) the complexity of the adaptive traits and the need to define more clearly future ideotypes; (d) the lack of shared and integrative platforms allowing a complete appraisal of the genotype-phenotype-environmental links; (e) legal, market and consumer acceptance of new genotypes. The present chapter provides an overview of suitable strategies and challenges linked to the adaptation of viticulture to a changing environment

    A second update on mapping the human genetic architecture of COVID-19

    Get PDF
    corecore