49 research outputs found

    Inhibition of Pseudomonas aeruginosa Biofilm Formation with Surface Modified Polymeric Nanoparticles

    Get PDF
    The gram-negative bacterial pathogen Pseudomonas aeruginosa represents a prominent clinical concern. Due to the observed high levels of antibiotic resistance, copious biofilm formation, and wide array of virulence factors produced by these bacteria, new treatment technologies are required. Here, we present the development of a series of P. aeruginosa LecA-targeted polymeric nanoparticles and demonstrate the anti-adhesion and biofilm inhibitory properties of these constructs

    Inhibition of Pseudomonas aeruginosa Biofilm Formation with Surface Modified Polymeric Nanoparticles

    Get PDF
    The gram-negative bacterial pathogen Pseudomonas aeruginosa represents a prominent clinical concern. Due to the observed high levels of antibiotic resistance, copious biofilm formation, and wide array of virulence factors produced by these bacteria, new treatment technologies are required. Here, we present the development of a series of P. aeruginosa LecA-targeted polymeric nanoparticles and demonstrate the anti-adhesion and biofilm inhibitory properties of these constructs

    Protein Kinase A Governs Oxidative Phosphorylation Kinetics and Oxidant Emitting Potential at Complex I

    Get PDF
    he mitochondrial electron transport system (ETS) is responsible for setting and maintaining both the energy and redox charges throughout the cell. Reversible phosphorylation of mitochondrial proteins, particularly via the soluble adenylyl cyclase (sAC)/cyclic AMP (cAMP)/Protein kinase A (PKA) axis, has recently been revealed as a potential mechanism regulating the ETS. However, the governance of cAMP/PKA signaling and its implications on ETS function are incompletely understood. In contrast to prior reports using exogenous bicarbonate, we provide evidence that endogenous CO2 produced by increased tricarboxylic acid (TCA) cycle flux is insufficient to increase mitochondrial cAMP levels, and that exogenous addition of membrane permeant 8Br-cAMP does not enhance mitochondrial respiratory capacity. We also report important non-specific effects of commonly used inhibitors of sAC which preclude their use in studies of mitochondrial function. In isolated liver mitochondria, inhibition of PKA reduced complex I-, but not complex II-supported respiratory capacity. In permeabilized myofibers, inhibition of PKA lowered both the Km and Vmax for complex I-supported respiration as well as succinate-supported H2O2 emitting potential. In summary, the data provided here improve our understanding of how mitochondrial cAMP production is regulated, illustrate a need for better tools to examine the impact of sAC activity on mitochondrial biology, and suggest that cAMP/PKA signaling contributes to the governance of electron flow through complex I of the ETS

    Ethanolamine regulates CqsR quorum-sensing signaling in Vibrio cholerae

    Get PDF
    The pathogen that causes cholera, Vibrio cholerae, uses the cell-cell communication process known as quorum sensing (QS) to regulate virulence factor production and biofilm formation in response to changes in population density and complexity. QS is mediated through the detection of extracellular chemical signals called autoinducers. Four histidine kinases, LuxPQ, CqsS, CqsR and VpsS, have been identified as receptors to activate the key QS regulator LuxO at low cell density. At high cell density, detection of autoinducers by these receptors leads to deactivation of LuxO, resulting in population-wide gene expression changes. While the cognate autoinducers that regulate the activity of CqsS and LuxQ are known, the signals that regulate CqsR have not been determined. Here we show that the common metabolite ethanolamine specifically interacts with the ligand-binding CACHE domain of CqsR in vitro and induces the high cell-density QS response through CqsR kinase inhibition in V. cholerae cells. We also identified residues in the CqsR CACHE domain important for ethanolamine detection and signal transduction. Moreover, mutations disrupting endogenous ethanolamine production in V. cholerae delay the onset of, but do not abolish, the high cell-density QS gene expression. Finally, we demonstrate that modulation of CqsR QS response by ethanolamine occurs inside animal hosts. Our findings suggest that V. cholerae uses CqsR as a dual-function receptor to integrate information from the self-made signals as well as exogenous ethanolamine as an environmental cue to modulate QS response

    Broad Spectrum Pro-Quorum-Sensing Molecules as Inhibitors of Virulence in Vibrios

    Get PDF
    Quorum sensing (QS) is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives

    Redox homeostasis and age-related deficits in neuromuscular integrity and function

    Get PDF
    Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age-related muscleatrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributorto morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population(estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associatedwith neuromuscular ageing, will inevitably increase. Desp ite the importance of this ‘epidemic’ problem, the primarybiochemical and molecular mechanisms underlying age-related deficits in neuromuscular integrity and function have not beenfully determined. Skeleta l muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources,and age-associated oxidative damage has been suggested to be a major fac tor contributing to the initiation and progression ofmuscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, anddisruption of these events over time due to altered redox control has been proposed as an underlying mechanis m of ageing.The role of oxidants in ageing has been extensively examined in different model organisms that have undergone geneticmanipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function ofRONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redoxhomeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken inmurine models to examine the role of redox regulation in age-related muscle atrophy and weakness
    corecore