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ABSTRACT 17 

The pathogen that causes cholera, Vibrio cholerae, uses the cell-cell communication process 18 

known as quorum sensing (QS) to regulate virulence factor production and biofilm formation in 19 

response to changes in population density and complexity. QS is mediated through the detection 20 

of extracellular chemical signals called autoinducers. Four histidine kinases, LuxPQ, CqsS, CqsR 21 

and VpsS, have been identified as receptors to activate the key QS regulator LuxO at low cell 22 

density.  At high cell density, detection of autoinducers by these receptors leads to deactivation of 23 

LuxO, resulting in population-wide gene expression changes. While the cognate autoinducers that 24 

regulate the activity of CqsS and LuxQ are known, the signals that regulate CqsR have not been 25 

determined. Here we show that the common metabolite ethanolamine specifically interacts with 26 

the ligand-binding CACHE domain of CqsR in vitro and induces the high cell-density QS response 27 

through CqsR kinase inhibition in V. cholerae cells. We also identified residues in the CqsR 28 

CACHE domain important for ethanolamine detection and signal transduction. Moreover, 29 

mutations disrupting endogenous ethanolamine production in V. cholerae delay the onset of, but 30 

do not abolish, the high cell-density QS gene expression. Finally, we demonstrate that modulation 31 

of CqsR QS response by ethanolamine occurs inside animal hosts. Our findings suggest that V. 32 

cholerae uses CqsR as a dual-function receptor to integrate information from the self-made signals 33 

as well as exogenous ethanolamine as an environmental cue to modulate QS response.  34 
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IMPORTANCE 35 

Many bacteria use quorum sensing to regulate cellular processes that are important for their 36 

survival and adaptation to different environments. Quorum sensing usually depends on the 37 

detection on chemical signals called autoinducers made endogenously by the bacteria. We show 38 

here ethanolamine, a common metabolite made by various bacteria and eukaryotes, can modulate 39 

the activity of one of the quorum-sensing receptors in Vibrio cholerae, the etiological agent of the 40 

disease cholera. Our results raise the possibility that V. cholerae or other quorum-sensing bacteria 41 

can combine environmental sensing and quorum sensing to control group behaviors. 42 

  43 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/589390doi: bioRxiv preprint 

https://doi.org/10.1101/589390


INTRODUCTION 44 

Quorum sensing (QS) is used by a wide variety of bacteria to coordinate population-wide 45 

changes in behaviors in response to cell density (1). Vibrio cholerae, which causes the diarrheal 46 

disease cholera in the human host, uses QS to regulate virulence factor production, biofilm 47 

formation, Type VI secretion, metabolic regulation, and natural competence to maintain 48 

competitive fitness in various environments (2-10). Four parallel QS signaling systems pathways 49 

have been identified in V. cholerae that rely on a phosphorelay to regulate downstream gene 50 

expression (11) (Figure 1). At low cell-density (LCD), four histidine kinases CqsS, LuxPQ, CqsR, 51 

and VpsS function in parallel to phosphorylate LuxO through an intermediate phosphotransfer 52 

protein LuxU (10, 11). Phosphorylated LuxO promotes the transcription of small RNAs Qrr1-4 53 

which promote the translation of the transcriptional regulator AphA (12, 13). Conversely, Qrr1-4 54 

repress the translation of transcriptional regulator HapR (14, 15). Virulence and biofilm genes are 55 

expressed at LCD (4-6, 9, 11). At high cell-density (HCD), each receptor kinase detects its unique 56 

chemical messenger called autoinducer (AI) that inhibits the kinase activity upon signal binding 57 

(1).  Autoinducer synthase CqsA catalyzes the production of CAI-1 (S-3-hydroxytridecan-4-one) 58 

which is detected by receptor CqsS (16-20) and autoinducer synthase LuxS produces AI-2 (S-59 

TMHF-borate) which is detected by LuxP/Q (21-25). Thus, at HCD, when these receptors are 60 

bound to their cognate signals, kinase activity is inhibited, leading to dephosphorylation of LuxO. 61 

This prevents the transcription of Qrr 1-4 thereby inhibiting AphA production and promoting 62 

HapR translation. Type VI secretion and competence genes are expressed at HCD (3, 7). Another 63 

QS circuit was recently identified in V. cholerae, consisting of a cytoplasmic receptor VqmA 64 

which recognizes DPO (3,5-dimethylpyrazin-2-ol) but this system does not participate in 65 

regulating LuxO (26). 66 
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Although the kinase activity of both CqsR and VpsS is cell-density dependent, the signals 67 

that control the activity of CqsR and VpsS are unclear (11). VpsS has no predicted transmembrane 68 

domains and is thought to be cytoplasmic. Nitric oxide (NO) has been shown to regulate the kinase 69 

activity of VpsS in vitro through a signaling partner VpsV (27). However, V. cholerae does not 70 

make NO and ∆vpsV mutants has no detectable change in QS response (10, 11), so the exact role 71 

of NO sensing by VpsV in V. cholerae QS response remains unknown.  72 

In contrast, CqsR is predicted to have a periplasmic CACHE domain that is known to be 73 

involved in signal sensing in many chemotaxis receptors (28). Here, by isolating constitutively 74 

active CqsR mutants, we identified several key residues within the CqsR CACHE domain required 75 

for signal binding or signal transduction. Through a chemical library screen and structure-activity 76 

relationship in vitro binding assay, we discovered that ethanolamine and its analogs, alaninol and 77 

serinol, bind to the CqsR CACHE domain and modulate QS response of V. cholerae through CqsR. 78 

We also determined that V. cholerae strains defective in ethanolamine biosynthesis delayed the 79 

onset of, but did not abolish, the HCD QS response. Using an infant mouse colonization model, 80 

we show that ethanolamine modulates V. cholerae QS response through CqsR inside animal hosts. 81 

We therefore predict that ethanolamine is used as an external cue for niche sensing and additional 82 

signals are produced by V. cholerae to modulate QS through CqsR. 83 

MATERIALS AND METHODS 84 

Bioinformatics 85 

Conserved domain structures of V. cholerae CqsR (accession no.: NP_231465.1) were analyzed 86 

using a suite of online tools including CDD (29), CDART (30),  InterPro (31), and TMHMM (32). 87 
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3D structural modelling of the CqsR ligand-binding domain was performed using HHPred (33) 88 

and Phyre2 (34) and compared to the known structure of the periplasmic region of Mlp37 (PDB 89 

ID: 3C8C) (35). 90 

Strains, media and culture conditions 91 

All V. cholerae strains used in this study were derived from C6706str2, a streptomycin-resistant 92 

isolate of C6706 (O1 El Tor) (36). The HapR-dependent bioluminescent reporter pBB1 has been 93 

previously described (11). V. cholerae and E. coli cultures were grown with aeration in Luria-94 

Bertani (LB) broth at 30°C and 37°C, respectively. Unless specified, media was supplemented 95 

with streptomycin (Sm, 100 μg/ml), tetracycline (Tet, 5 μg/ml), ampicillin (Amp, 100 μg/ml), 96 

kanamycin (Kan, 100 μg/ml), chloramphenicol (Cm, 5 μg/ml) and polymyxin B (Pb, 50 U/ml) 97 

when appropriate. Bacterial strains used in this study is provided in Supplementary Table 1. 98 

DNA manipulations and strain construction 99 

All DNA manipulations were performed using standard procedures. Deletions and point mutations 100 

were introduced into the V. cholerae genome by allelic exchange using the suicide vector pKAS32 101 

or a modified version, pJT961, as previously described (11, 37, 38). Mutant strains carrying the 102 

desired mutations were screened and confirmed by PCR and sequencing. 103 

Bioluminescence assays 104 

Bioluminescence assays were performed as described previously (11) with slight modifications. 105 

For manual assays, single colonies were grown overnight at 30 oC in LB containing appropriate 106 

antibiotics and the cultures were diluted at least 100-fold in the same medium. Diluted cultures 107 
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were grown at 30 oC and OD600 (1 ml of culture) and light production (0.2 ml of culture) were 108 

measured every 45–60 min until OD600 reached ~2.0 using a Thermo Scientific Evolution 201 UV-109 

Visible Spectrophotometer and a BioTek Synergy HT Plate Reader, respectively. For automated 110 

assays, single colonies were grown in LB medium containing appropriate antibiotics in 96- or 384-111 

well microplates at 30°C with aeration. OD600 and light production were measured every 30 min 112 

for at least 10 hr using a BioTek Synergy HT Plate Reader. Light production per cell was calculated 113 

from dividing light production by OD600. 114 

Random mutagenesis and screening of constitutively active CqsR mutants. 115 

The region encoding the predicted ligand-binding domain of CqsR (amino acids 31-297) was 116 

amplified from pEVS143-cqsR (11, 39) with primers WNTP0548 117 

(GAGTTATTGGGGGCTTGAAGT) and WNTP0549 118 

(AATCCTTTTTCGATGTTGATAATTAAGTCG) and subjected to random mutagenesis using 119 

GeneMorph II EZClone Mutagenesis kit (Agilent Technologies) per manufacturer’s instructions. 120 

The resulting cqsR random mutagenized library was transformed into XL10-Gold E. coli cells. A 121 

portion of the library was then conjugated into a quadruple QS receptor strain (Δ4, ∆cqsS, ∆luxQ, 122 

∆cqsR, ∆vpsS) carrying a HapR-dependent bioluminescence reporter pBB1 (11) and the 123 

transconjugants were selected on LB/Pb/Kan/Tet2 plates and used for screening of constitutively 124 

active CqsR mutants. Colonies were picked and transferred into microplates containing 125 

LB/Kan/Tet2/IPTG medium using a colony picking robot and grown at 30°C overnight. OD600 and 126 

luminescence were measured with a BioTek Synergy HT Plate Reader. Mutants of interest that 127 

displayed low relative bioluminescence were collected, re-screened again to confirm. The 128 

mutations in the plasmid-borne cqsR of these isolates were determined by sequencing. To 129 
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introduce specific amino acid changes, site directed mutagenesis on the plasmid-borne cqsR was 130 

performed using the QuikChange™ XL Site-Directed Mutagenesis Kit (Agilent) per 131 

manufacturer’s instructions.  132 

NMR metabolomics. 133 

Extracellular metabolite analysis of V. cholerae culture supernatants was performed as described 134 

previously (8) except plain LB medium was used as reference standard. An 1H NMR spectrum of 135 

each sample was collected at 25°C on a Bruker Avance 600 spectrometer by using 64 scans and a 136 

NOE1D pulse sequence. Data were processed and analyzed by using CHENOMX (version 8.0) 137 

for quantification of metabolites present in each sample. The average value and the standard error 138 

of the mean (SEM) were determined for at least three replicates. 139 

CqsR LBD purification 140 

The region encoding the periplasmic region of CqsR (CqsR-LBD, residues 35-274) was PCR 141 

amplified with primers WNTP0694 142 

(GCCTGGTGCCGCGCGGCAGCGAAGTCCCATTTAGAAAAGAG) and WNTP695 143 

(GCTTTGTTAGCAGCCGGATCTTAGATGTTGATAATTAAGTCGAAG) from V. cholerae 144 

genomic DNA; the vector pET28B was amplified with primers WNTP692 145 

(GCTGCCGCGCGGCACCAG) and WNTP693 (GATCCGGCTGCTAACAAAG). The two 146 

fragments were joined together using Gibson reaction (NEB) and the resulting plasmid was 147 

transformed into E. coli BL21(DE3) strain (WN5327). 148 

For CqsR-LBD purification, strain WN5327 was grown to OD600 ~ 0.5 and induced with 1 mM 149 

IPTG at 16 oC overnight. Cells were collected by centrifugation and resuspended in binding buffer 150 

(50mM sodium phosphate buffer, pH 7.0; 300mM sodium chloride; 10mM imidazole, pH 7.7; 5% 151 
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glycerol). Resuspended cells were then lysed with a fluidizer. Insoluble materials were removed 152 

by centrifugation (10,000g, 4 oC, 1 hour) and subsequent filtering through a 0.45 µm filter. Cleared 153 

lysate was loaded onto His-Trap column (1 mL) equilibrated with binding buffer. The column was 154 

then washed with 20 mL binding buffer. Proteins were eluted with binding buffer containing 120 155 

to 300 mM imidazole. Fractions containing CqsR-LBD were pooled, frozen in aliquots, and stored 156 

at -80oC. 157 

Differential scanning fluorimetry 158 

Differential scanning fluorimetry assays were performed using a BioRad CFX Connect Real‐Time 159 

PCR instrument (40). For chemical screening, ligands were prepared by dissolving the contents of 160 

Biolog plates PM 1-4 in 50 μl of water (final concentration ~10–20 mM). Each 20 μl standard assay 161 

contained 1× PBS (pH 7.5), 10%(v/v) glycerol, 10 μM CqsR-LBD, and 5× SYPRO Orange. Two 162 

μl of the resuspended Biolog compounds were added to each assay. Samples were heat denatured 163 

from 20°C to 90°C at a ramp rate of 1°C min−1. The protein unfolding curves were monitored by 164 

detecting changes in SYPRO Orange fluorescence. The first derivative values (−dF/dt) from the 165 

raw fluorescence data were used to determine the melting temperature (Tm). For testing other 166 

compounds, a 10× stock was prepared and 2 μl was added to each well and the experiments were 167 

conducted as described above.  168 

MicroScale Thermophoresis (MST) 169 

Nickel affinity resin-purified CqsR-LBD was further purified using anion exchange 170 

chromatography (Source15Q - GE Healthcare) and size exclusion chromatography (S200 – GE 171 

Healthcare). Purified CqsR-LBD was concentrated to 4.3 mg/ml and stored in 50 mM sodium 172 

phosphate, pH 7.7, and 300 mM sodium chloride. CqsR-LBD was diluted to 20 μM and labeled 173 
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using the Monolith NT Protein Labeling Ki RED-NHS (NanoTemper Technologies). Different 174 

concentrations of ethanolamine were incubated with 20 nM working stock solutions of labeled 175 

protein in the dark for 30 min at 4o C. After incubation, the samples were transferred into standard 176 

treated capillaries (NanoTemper Technologies) and read in a Monolith NT.115 Blue/Red 177 

instrument at room temperature using 20% LED and medium MST power. Binding affinities were 178 

calculated from three experiments. 179 

Chemical Synthesis of EA Metabolites 180 

See supplementary information for chemical synthesis of HEGly and HEHEAA. 181 

Ethics statement 182 

All animal experiments were done in accordance with NIH guidelines, the Animal Welfare Act, 183 

and US federal law. The infant mouse colonization experimental protocol B-2018-99 was 184 

approved by Tufts University School of Medicine's Institutional Animal Care and Use Committee. 185 

All animals were housed in a centralized and AAALAC-accredited research animal facility that is 186 

fully staffed with trained husbandry, technical, and veterinary personnel in accordance with the 187 

regulations of the Comparative Medicine Services at Tufts University School of Medicine. 188 

Infant mouse colonization model 189 

For V. cholerae infection, bacterial strains were grown aerobically overnight in LB/Sm at 30°C 190 

and diluted in LB for inoculum. Approximately 106 colony forming units (CFUs) in 50 µl were 191 

introduced orogastrically to 3- to 5-day-old CD-1 mice (Charles River Laboratories). Infected 192 

animals were subsequently gavaged with 50µL 10mM ethanolamine (EA) or vehicle (LB) at 2 and 193 

4 hr post-infection. All animals were sacrificed 8 hours after infection and their small intestines 194 

were harvested and homogenized. V. cholerae colonized in the small intestine was enumerated by 195 
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plating serial dilutions of intestinal homogenate on LB/Sm plates. V. cholerae colonization of the 196 

small intestine is presented as a single data point per mouse and data are graphed with the median. 197 

Two-tailed unpaired Student's t tests, assuming unequal variances were used for statistical analyses 198 

**P < 0.01. 199 

RESULTS  200 

CqsR is predicted to carry a periplasmic CACHE domain 201 

Similar to other hybrid histidine kinases, CqsR possesses a cytoplasmic phosphoacceptor domain 202 

(aa 355 – 421), an HATPase domain (aa 363 – 583) and a C-terminal response regulator domain 203 

(aa 603- 720). Using various bioinformatics tools, the periplasmic region of CqsR is predicted to 204 

carry a periplasmic dCACHE_1 domain ((28, 41), aa 44-239, simplified as CACHE domain 205 

hereafter) (Figure 2A). The predicted structure contains the characteristic long N-terminal α-helix 206 

(green), a linker (yellow) that connects this helix to two globular domains (pocket I, red and pocket 207 

II, blue) with a small α-helical linker between the two pockets (orange), and a C-terminal α-helix 208 

(purple) that connects the domain to the cytoplasm (Figure 2B), strikingly similar to other CACHE 209 

proteins, such as V. cholerae chemoreceptor Mlp37 (35) (Figure 2B). These similarities strongly 210 

suggest that the periplasmic region of CqsR functions as a ligand-binding domain to regulate its 211 

cytoplasmic kinase activity. 212 

 213 

Identification of residues in the CqsR periplasmic region important for signal sensing or 214 

signal transduction 215 

CqsR kinase activity is inhibited by an uncharacterized activity present in the spent culture media 216 

from V. cholerae (11). We therefore hypothesized that CqsR detects a discrete chemical signal 217 

through the periplasmic CACHE domain and predicted that certain mutations in this domain could 218 
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impair signal sensing and signal transduction. Consequently, these mutations would turn CqsR 219 

into a constitutively active kinase even in the presence of the cognate signals. To identify these 220 

mutations, we constructed a cqsR plasmid library in which the whole periplasmic region was 221 

randomly mutagenized. The randomly mutagenized cqsR library was then introduced into a 222 

quadruple receptor mutant (∆4) V. cholerae strain (∆luxQ, ∆cqsS, ∆vpsS, ∆cqsR) that also harbors 223 

a HapR-dependent bioluminescent reporter cosmid pBB1 (11). While the quadruple receptor 224 

mutant produces light constitutively due to the constant production of HapR, in the presence of a 225 

plasmid-borne wild type (WT) copy of cqsR, this strain produces low bioluminescence at low cell-226 

density (LCD) and subsequently turns on bioluminescence production at high cell-density (HCD) 227 

due to signal detection and kinase inhibition of CqsR (11). Thus, we predicted that clones carrying 228 

plasmids expressing WT cqsR or a null cqsR allele would appear bright at HCD, while clones 229 

producing CqsR variants insensitive to the presence of cognate signal would appear darker at HCD. 230 

We measured the bioluminescence of ~26,000 clones from this random library and identified 79 231 

candidates impaired for light production at HCD. Most candidates harbored multiple mutations in 232 

the plasmid-borne cqsR. There were 23 unique mutations in these candidates. When each unique 233 

mutation was introduced back to cqsR individually, only eight unique mutations in cqsR resulted 234 

in lower bioluminescence production at HCD (Figure 2C). These cqsR mutations caused changes 235 

in the two aspartate residues (D171V and D178V) mapped to pocket I of the predicted ligand 236 

binding domain, two changes in pocket II (L217S and V219E), four changes (R49S, A259V, 237 

H262Y, and L268I) in the two helical regions that either exit or enter the cellular membrane and 238 

are likely not involved in direct ligand interactions. Strikingly, both Asp171 and Asp198 residues 239 

in the pocket I of CqsR are predicted to be in the same positions as the Asp172 and Asp201 residues 240 

respectively, in Mlp37, which have been shown to be critical for binding to amino acid signals 241 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 26, 2019. ; https://doi.org/10.1101/589390doi: bioRxiv preprint 

https://doi.org/10.1101/589390


(35). Therefore, our results suggest that, similar to Mlp37, CqsR detects its cognate signals through 242 

the periplasmic CACHE domain.  243 

 244 

Chemical screen identified ethanolamine as a potential CqsR ligand. 245 

Since the periplasmic CACHE domain is critical for the signal sensing, we attempted to identify 246 

potential ligands capable of binding to the putative CqsR ligand-binding domain (CqsR-LBD), by 247 

performing a differential scanning fluorimetry screen using the common metabolites contained 248 

within the Biolog PM1-4 plates. This assay assumed that ligand binding leads to stabilization of 249 

the target protein, resulting in an increase of melting temperature (Tm) of the protein, which can 250 

be determined by measuring the dynamics of Sypro Orange fluorescence emission at different 251 

temperatures. In the absence of exogenous metabolites, the average Tm of the purified CqsR-LBD 252 

was observed to be 46 °C under the test conditions. Out of the ~400 metabolites tested, including 253 

some of the known compounds that bind CACHE domain such as amino acids, carboxylates, and 254 

polyamines, we only observed a shift in the Tm of >5 °C in the presence of one tested compound, 255 

ethanolamine (or 2-aminoethanol). The shift in Tm of CqsR in the presence of ethanolamine was 256 

dose-dependent. The largest shift in Tm of +15 °C was observed for 10 mM ethanolamine (Table 257 

1) with smaller shifts of +9.33 °C, +6°C and +2°C for 1 mM, 100 µM and 10 µM ethanolamine 258 

respectively.  To investigate the specificity of the interactions between ethanolamine and the 259 

CqsR-LBD, we determined how chemical modifications to the ligand affected CqsR-LBD binding 260 

(Table 1). Replacing the hydroxyl group of ethanolamine with a thiol, methyl, or carboxyl group 261 

abolished in vitro binding to CqsR-LBD, as indicated by the lack of change in the observed Tm in 262 

the presence of these compounds. Similarly, replacing the amine group with a thiol or methyl 263 
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group also abolished in vitro binding (Table 1). In addition, single or multiple methylations of the 264 

amine group of ethanolamine also abolished binding (Table 1). We therefore concluded that the 265 

presence of both the amine and the hydroxyl groups in ethanolamine are essential for efficient 266 

CqsR-LBD binding. Side-chain substitutions at the carbon atom next to the hydroxyl group 267 

(labelled i in Table 1) also abolished CqsR-LBD binding regardless of the stereochemistry of the 268 

hydroxyl group. However, substitutions on the carbon atom next to the amine group (labelled ii) 269 

appeared to be better tolerated, as indicated by the increase in Tm observed for L-alaninol and 270 

serinol (Table 1). Interestingly, stereospecificity is critical for binding activity as indicated by 271 

lower shift in Tm for D-alaninol, a stereo-isomer of L-alaninol, at the same concentration (Table 272 

1).  273 

A recent study showed that a specific ethanolamine derivative, N-(2-hydroxyethyl)-2-(2-274 

hydroxyethylamino) acetamide [HEHEAA], present in commercial preparations of ethanolamine, 275 

is responsible for promotion of pipA transcription in Pseudomonas sp. GM79 in response to plant 276 

exudates (42). We tested eight common compounds that accumulate during chemical synthesis of 277 

ethanolamine including HEHEAA (42, 43) for their ability to bind to CqsR and, in our hands, none 278 

of the compounds tested produced a change in Tm of the CqsR-LBD in the binding assay 279 

(Supplementary Table 2), suggesting the CqsR response to ethanolamine was not due to these 280 

common contaminants. Finally, using MicroScale Thermophoresis, we determined the binding 281 

affinity (Kd) of ethanolamine to CqsR-LBD is ~0.5 µM (Supplementary Figure 1). Collectively, 282 

our data indicate that ethanolamine and some ethanolamine derivatives bind to CqsR-LBD with a 283 

high degree of specificity.  284 

Effect of ethanolamine and its analogs in regulating V. cholerae quorum sensing  285 
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Since ethanolamine binds to the CqsR-LBD in vitro, we postulated that exogenous addition of 286 

ethanolamine might diminish CqsR kinase activity, leading to premature induction of HCD QS 287 

response in V. cholerae cells. To test this, we measured the density-dependent bioluminescence 288 

profile of a ∆3 cqsR+ (∆luxQ, ∆cqsS, ∆vpsS) strain that harbors the HapR-dependent 289 

bioluminescent reporter pBB1 in the presence of varying concentrations of exogenously added 290 

ethanolamine. In the absence of ethanolamine, similar to previously reported (11), the ∆3 cqsR+ 291 

strain displayed the characteristic U-shaped HapR-dependent bioluminescence profile due to 292 

changes in CqsR kinase activity in different cell densities (Figure 3A). Induction of HCD QS 293 

response by ethanolamine, as observed by increased levels of light production at low cell densities, 294 

was dose-dependent (Figure 3A). In the presence of 10 mM exogenously added ethanolamine, the 295 

strain was constitutively bright at all cell densities when compared to that from the culture in LB 296 

medium without ethanolamine added (Figure 3A). Moreover, lower concentrations (1mM or 297 

0.1mM) of exogenous ethanolamine also induced a higher level of light production in this reporter 298 

strain. Consistent with our model, using a Pqrr4-lux reporter (11), we also determined that 299 

ethanolamine repressed Qrr4 transcription in the ∆3 cqsR+ strain (Supplementary Figure 2). Similar 300 

QS-inducing effects were obtained for L-alaninol and serinol (Figure 3B, 3C and Supplementary 301 

Figure 2). Consistent with the observation that D-alaninol did not show any detectable in vitro 302 

binding activity to CqsR, 10 mM D-alaninol was inactive in inducing QS gene expression (Table 303 

I, Figure 3D, and Supplementary Figure 2). In addition, ethanolamine did not induce HapR-304 

dependent bioluminescence in other triple QS receptor mutants where only CqsS, LuxPQ, or VpsS 305 

is present as the sole QS receptor (Supplementary Figure 3), indicating that ethanolamine induces 306 

QS in a CqsR specific manner.  Finally, unlike the strain producing WT CqsR, 10 mM of 307 

ethanolamine did not induce constitutive light production in the CqsRD171V and CqsRD198V CACHE 308 
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domain mutants (Figure 3E and Figure 3F). Together, our results strongly suggest that 309 

ethanolamine specifically interacts with the CACHE domain of CqsR to inhibit its kinase activity 310 

and modulate QS gene expression in V. cholerae.  311 

The role of intrinsically produced ethanolamine in QS 312 

We showed above that exogenous ethanolamine inhibits CqsR kinase activity in V. cholerae, we 313 

then tested if endogenously made ethanolamine also plays a role in controlling CqsR. In E. coli, 314 

ethanolamine is derived from the degradation of glycerol-3-phosphoethanolamine to glycerol-3-315 

phosphate and ethanolamine (44, 45). This reaction is predicted to be catalyzed by two V. cholerae 316 

glycerophosphodiester phosphodiesterases VCA0136 (GlpQ homolog) and VC1554 (UgpQ 317 

homolog).  We used 1H NMR to determine the ethanolamine level in the cell-free supernatants 318 

derived from both the ∆3 cqsR+ and the ∆3 cqsR+ ∆vca0136 ∆vc1554 strains. We detected ~25 µM 319 

ethanolamine in the supernatants harvested from the ∆3 cqsR+ strain but the level of ethanolamine 320 

was below the detection limit in the supernatants from the ∆3 cqsR+ ∆vca0136 ∆vc1554 strain.  321 

After confirming the double phosphodiesterase mutants did not make any ethanolamine, we used 322 

the HapR-dependent bioluminescence pBB1 reporter to measure the QS response of these strains. 323 

We expected the mutant is impaired in expressing the HCD QS response due to the lack of 324 

ethanolamine to repress the CqsR kinase activity. However, the double phosphodiesterase mutant 325 

still exhibited density-dependent U-shaped bioluminescence profile similar to the ∆3 cqsR+ strain. 326 

Nevertheless, the onset of the transition to HCD bioluminescence production was delayed in the 327 

double phosphodiesterase mutants (Figure 4), suggesting the inhibition of CqsR kinase activity 328 

and HapR production occur at a higher cell density. Consistent with the above results, using a 329 

Pqrr4-lux reporter, light production at LCD was higher in the ∆3 cqsR+ ∆vca0136 ∆vc1554 strain 330 
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when compared to that of the ∆3 cqsR+ strain (Supplementary Figure 4), indicating transcription 331 

of Qrr sRNAs is increased in the absence of endogenous ethanolamine production in the double 332 

phosphodiesterase mutants, resulting in a delayed HapR production. It should be noted that, even 333 

in the absence of endogenous ethanolamine production, repression of Qrr transcription and 334 

induction of HapR production still occur, indicating the presence of additional signals inhibiting 335 

CqsR kinase activity at HCD (Figure 4 and Supplementary figure 4). Moreover, addition of 10 336 

mM ethanolamine increased light production in ∆3 cqsR+ as well as in the ∆3 cqsR+ ∆vca0136 337 

∆vc1554 carrying the pBB1 HapR-dependent reporters (Figure 4) and decreased light production 338 

in the same strains carrying the Pqrr4-lux reporters (Supplementary figure 4), indicating CqsR 339 

sensing is functional in responding to exogenously supplied ethanolamine in these strains. 340 

Together, our results indicate that while endogenously made ethanolamine participates in QS gene 341 

regulation, V. cholerae produces additional signals that are capable of activating QS through CqsR.  342 

Ethanolamine modulates CqsR QS signaling inside animal hosts 343 

Production of the Toxin-Coregulated Pili, which is critical for V. cholerae host colonization, is 344 

repressed by the HCD QS response (5, 6). We previously showed that the ∆3 cqsR+ strain, but not 345 

the ∆4 strain, can colonize the small intestines of infant mice (11). To determine if exogenous 346 

ethanolamine influences CqsR signaling in vivo, we assayed the ability of the ∆3 cqsR+ strains to 347 

colonize the host in the presence of exogenous ethanolamine. While the ∆3 cqsR+ strain showed a 348 

~5-fold decrease in mouse small intestine colonization in the presence of ethanolamine compared 349 

to the group given the vehicle control, the ∆3 cqsRD171V strain showed no significant impairment 350 

in the ability to colonize the infant mouse in the presence of ethanolamine (Figure 5). These results 351 

indicate that high levels of ethanolamine in the gut can prematurely induce the HCD QS response 352 
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in the ∆3 cqsR+ strain and decrease colonization. Importantly, the effect of ethanolamine is 353 

dependent on the interaction between the compound and the CACHE domain of the CqsR. 354 

DISCUSSION 355 

In this study, we demonstrated that the periplasmic CACHE domain of CqsR QS receptor 356 

is involved in signal sensing; and we also identified a common metabolite ethanolamine as a signal 357 

that regulates the CqsR QS signaling pathway in V. cholerae. The periplasmic CACHE domain is 358 

common in many chemotaxis receptors and other membrane bound regulators (28); and CACHE 359 

domain proteins have been shown to interact with a variety of chemical compounds (28, 35, 41, 360 

46-48). While CACHE domain has been shown to interact with quaternary ammonium including 361 

choline (an ethanolamine analog that CqsR does not interact) to control chemotaxis (49, 50), our 362 

study provided an example where a CACHE domain interacts with an amino alcohol (i.e., 363 

ethanolamine) to regulate QS gene expression. Of note, the CACHE domain of CqsR shares no 364 

homology to that of another ethanolamine-sensing histidine kinase HK17 (EutW) in Enterococcus 365 

faecalis or the cytoplasmic transcriptional regulator EutR that detects ethanolamine in Salmonella 366 

(51, 52).  367 

Although ethanolamine binds to CqsR-LBD with sub-micromolar affinity (kd ~0.5 µM), 368 

millimolar level of ethanolamine is needed to fully induce the HCD QS response in V. cholerae. 369 

This apparent difference is not uncommon for signaling pathways dependent on CACHE receptor 370 

proteins (e.g.,(50, 53)). This is in stark contrast to the typical effective concentration for canonical 371 

autoinducers, such as CAI-1 and AI-2, which are in micromolar levels (16-19, 24, 25). 372 

Nonetheless, interaction of ethanolamine to CqsR is highly specific and modifications of almost 373 

any functional groups in ethanolamine result in total loss of activity. We reasoned that while 374 

ethanolamine binds to CqsR-LBD with high affinity in vitro, the binding affinity to the full length 375 
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CqsR inside V. cholerae cells could be different. Moreover, the import mechanism of ethanolamine 376 

into the V. cholerae periplasmic space is unclear. Indeed, V. cholerae is not known to metabolize 377 

ethanolamine as either carbon or nitrogen source (54) and it lacks the known ethanolamine 378 

transporters for importing the compound into the cytoplasm (55, 56). In addition, since the mutants 379 

defective in ethanolamine synthesis are still able to express a delayed HCD QS response, additional 380 

signals must be present and detected by CqsR, and these molecules could compete with 381 

ethanolamine for CqsR binding.  382 

Given V. cholerae does not use ethanolamine as a nutrient source, it is unclear why CqsR 383 

detects this specific metabolite out of many secreted molecules. However, ethanolamine has been 384 

implicated in niche recognition in several pathogens such as enterohaemorrhagic E. coli (EHEC), 385 

S. typhimurium (57), E. faecalis (58), and Clostridium difficile (59). Our results suggest that 386 

ethanolamine signaling may only operates in environments where ethanolamine is found in high 387 

abundance. Because ethanolamine is derived from the membrane phospholipid turnover, this 388 

compound is particularly prevalent in the gastrointestinal tract, where it can be found at 389 

concentrations over 2 mM per some reports (60). Thus, ethanolamine might act primarily as an 390 

environmental cue as opposed to a bona fide QS signal in V. cholerae. In Salmonella, ethanolamine 391 

metabolism genes and Type 3 secretion system genes are activated with high and low level of 392 

ethanolamine, respectively (57, 61). Similarly, in EHEC, exogenous ethanolamine increases the 393 

expression of virulence genes (51). However, unlike these examples in which ethanolamine 394 

sensing promotes virulence gene expression, ethanolamine detection through CqsR instead 395 

represses virulence gene expression by promoting HCD QS response in V. cholerae (11). This is 396 

especially relevant to the life cycle of V. cholerae since the major colonization site of this pathogen 397 

is the small intestine while ethanolamine may be more abundant in the lower gastrointestinal (GI) 398 
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tract because it cannot be metabolized by the majority of commensal species (62), thus, 399 

ethanolamine sensing may prevent V. cholerae from colonizing in an undesirable niche.   400 

It is puzzling why V. cholerae QS circuit is composed of four functionally-redundant 401 

pathways, we previously suggest that the “many-to-one” arrangement is important for the 402 

robustness of the system to prevent signal perturbation and the HCD QS response is only expressed 403 

when all four receptors are bound with the cognate signals (11). Our results here suggest that the 404 

four QS receptors integrate information derived from different sources. It has been suggested CAI-405 

1 is used for inter-Vibrio signaling (16, 18) and AI-2 is for inter-species signaling (63, 64); perhaps 406 

CqsR serves as a dual-function receptor that senses an unknown self-made signal (e.g., 407 

autoinducer) and an exogenous metabolic by-product as an environmental cue. A combination of 408 

different signals ensures V. cholerae only expresses the HCD QS response to repress virulence 409 

factor production and biofilm formation at the most appropriate time and environment. This kind 410 

of dual detection of cognate AIs and other chemical signals by a single QS receptor is not 411 

commonly observed. QseC is one of the known QS receptors that detects both an AI signal (AI-3) 412 

and other chemical cues (epinephrine and norepinephrine) to control virulence gene expression in 413 

E. coli and Salmonella (69). It is proposed that such unique QS receptor can be used for 414 

communication between the pathogens and the hosts (52). Further work is required to elucidate 415 

the role of ethanolamine sensing in inter-kingdom QS signaling and virulence control in V. 416 

cholerae. 417 
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TABLE 1 Effects of ethanolamine and its analogs on the melting temp of CqsR-LBD. 

Compound Structurea Tm (°C )b 

None - 46 

Ethanolamine [2-aminoethanol] 
i

ii

NH2
OH

 
61 

Cysteamine [2-aminoethanethiol] 
i

ii

NH2
SH

 
46 

1-propanamine 
i

ii

NH2
CH3

 
46.33 [1.15] 

β-alanine [2-Carboxyethylamine] 
i

ii

NH2O

OH

 

46 

Mercaptoethanol [2-Hydroxyethanethiol] 
i

ii

SH
OH

 
46 

1-Propanol 
i

ii

CH3
OH

 

 

43.67 [0.58] 

 

2-Methylaminoethanol 

 i

ii

NH
OH CH3

 
49.67 [0.58] 

 

2-Dimethylaminoethanol 

 

i

ii

N
OH CH3

CH3  

48 

Choline [(2-Hydroxyethyl)trimethyl ammonium] i

ii

N
+OH CH3

CH3
CH3

 

46 
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aFunctional groups displayed in red are the ones that vary from the base compound ethanolamine. 426 

bData shown as average of 3 replicates in the presence of 10 mM tested compounds. Square 427 

brackets indicate standard deviation where applicable. 428 

  429 

  430 

(S)-(+)-1-Amino-2-propanol 

 

i
ii

NH2
OH

CH3  

48.67 [0.58] 

(R)-(−)-1-Amino-2-propanol 

 

i
ii

NH2
OH

CH3  

48 

L-alaninol [(S)-(+)-2-Amino-1-propanol] 
i

ii

NH2
OH

CH3

 

60 

D-alaninol [(R)-(−)-2-Amino-1-propanol] 
i

ii

NH2
OH

CH3

 

45 

Serinol [2-Amino-1,3-propanediol] 

i

ii

NH2
OH

OH

 

53.67 [0.58] 
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 431 

Figure 1 Quorum-sensing circuit in Vibrio cholerae 432 

Quorum sensing in V. cholerae is controlled by four histidine kinases CqsS, LuxPQ, CqsR and 433 
VpsS. At low cell density, these receptors act predominantly as kinases and phosphorylate LuxO 434 
through LuxU. Phosphorylated LuxO activates transcription of small RNAs Qrr1-4 which inhibit 435 
HapR translation and promote AphA translation, thereby resulting in a low cell density expression 436 
profile. At high cell density, when the cognate signals are bound, the kinase activity of these 437 
receptors is repressed. This leads to dephosphorylation of LuxO, preventing Qrr1-4 transcription. 438 
Therefore, HapR translation is induced and AphA translation repressed, leading to a high cell 439 
density gene expression pattern. Autoinducers CAI-1 (produced by CqsA) and AI-2 (produced by 440 
LuxS) have been previously characterized in regulating the kinase activity of CqsS and LuxPQ 441 
respectively. 442 
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 443 

Figure 2  444 

The CqsR CACHE domain is important for signal sensing and signal transduction. 445 

(A) CqsR is predicted to contain all the conserved cytoplasmic domains (phosphoacceptor (PA), 446 
histidine kinase (HK), and response regulator (RR) domains) of a hybrid histidine kinase with an 447 
N-terminal periplasmic CACHE domain flanked by two transmembrane helices (TM). (B) The 448 
predicted structure of the periplasmic CACHE domain of CqsR (right) is similar to that of Mlp37 449 
(left). The residues identified as important for signal sensing and signal transduction are 450 
highlighted in cyan in the predicted structure. See main text for further details. (C) Eight 451 
periplasmic CqsR residues are involved in signal sensing and signal transduction. Relative light 452 
production (lux/OD600) was measured in quadruple QS receptor (∆4) strains carrying a plasmid 453 
producing CqsR with single amino changes as well as a HapR-dependent bioluminescence 454 
reporter. Alteration in the CqsR helix domain (R49S), CACHE pocket 1 region (D171V, D198V), 455 
CACHE pocket 2 region (L217S, V219E), or the transmembrane proximal regions (A259V, 456 
H262Y, L268I) impaired bioluminescence production at high cell-density (OD600 > 1.5). Average 457 
values and standard errors from at least three independent replicates are shown. 458 

  459 
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 460 

Figure 3 Effects of ethanolamine and its analogs on CqsR quorum-sensing response. 461 

HapR-dependent bioluminescence profiles (lux/OD600) were measured in a ∆3 cqsR+ strain in the 462 
presence of 10 mM, 1mM, 0.1 mM A) ethanolamine, B) serinol, C) L-alaninol, D) D-alaninol. 463 
Blank indicates LB medium without ethanolamine added. HapR-dependent bioluminescence 464 
profiles (lux/OD600) were measured in E) ∆3 cqsRD198V strain and F) ∆3 cqsRD171V strain in the 465 
presence of 10 mM, 1mM, 0.1 mM concentrations ethanolamine respectively. Each figure shows 466 
a representative profile of each condition with two biological replicates. Each experiment was 467 
performed independently at least two times. 468 
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 469 

Figure 4 Effect of glycerophosphodiesterase deletions on CqsR quorum-sensing response. 470 

HapR-dependent bioluminescence profiles (lux/OD600) were measured in a ∆3 cqsR+ strain and an 471 
isogenic strain with deletions in loci vc1554 and vca0136, encoding the two putative 472 
glycerophosphodiester phosphodiesterases in LB medium and in the presence of 10 mM 473 
ethanolamine. The figure shows a representative profile of each condition with two biological 474 
replicates. Each experiment was performed independently at least two times. 475 

  476 
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 477 

Figure 5 Effect of exogenous ethanolamine on CqsR quorum-sensing response inside animal 478 

hosts. 479 

CFU counts per small intestine homogenate collected from mice (n = 7-8) infected with a ∆3 cqsR+ 480 
or ∆3 cqsRD171V mutant strain. To assess the effect of ethanolamine on strain colonization, mice 481 
were gavaged with 10mM ethanolamine (EA) or vehicle at 2 and 4 hours post infection. Each 482 
symbol represents the CFU enumerated from an individual mouse and the horizontal lines indicate 483 
the median for each group. **P < 0.01 (unpaired t test).  484 

 485 

  486 
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SUPPLEMENTARY INFORMATION 487 

Supplementary Table 1. List of strains used in this study 488 

Strain 
Number Organism Genotype Ab 

Resistancea Source 

WN3176  V. cholerae ΔcqsS ΔluxQ ΔvpsS Sm  (11) 
WN3208  V. cholerae ΔcqsS ΔluxQ ΔvpsS / pBB1  Sm Tet  (11) 
WN3357 V. cholerae ΔcqsS ΔluxQ ΔcqsR /pBB1 Sm Tet (11) 
WN3649 V. cholerae ΔcqsS ΔcqsR ΔvpsS /pBB1 Sm Tet (11) 
WN3651 V. cholerae ΔluxQ ΔcqsR ΔvpsS /pBB1 Sm Tet (11) 
WN3354 V. cholerae ΔcqsS ΔluxQ ΔvpsS ΔcqsR  Sm (11) 

WN4899  V. cholerae ΔcqsS ΔluxQ ΔvpsS ΔcqsR / pEVS143-cqsR / 
pBB1  Sm Kan Tet  This study 

WN5267  V. cholerae ΔcqsS ΔluxQ ΔvpsS ΔcqsR / pEVS143-cqsRR49S  
pBB1  Sm Kan Tet  This study 

WN5275  V. cholerae ΔcqsS ΔluxQ ΔvpsS ΔcqsR / pEVS143-cqsRD198V 
/ pBB1  Sm Kan Tet  This study 

WN5277  V. cholerae ΔcqsS ΔluxQ ΔvpsS ΔcqsR / pEVS143-cqsRL217S / 
pBB1  Sm Kan Tet  This study 

WN5279  V. cholerae ΔcqsS ΔluxQ ΔvpsS ΔcqsR / pEVS143-cqsRV219E 
/ pBB1  Sm Kan Tet  This study 

WN5281  V. cholerae ΔcqsS ΔluxQ ΔvpsS ΔcqsR / pEVS143-cqsRA259V 
/ pBB1  Sm Kan Tet  This study 

WN5285  V. cholerae ΔcqsS ΔluxQ ΔvpsS ΔcqsR / pEVS143-cqsRH262Y 
/ pBB1  Sm Kan Tet  This study 

WN5318  V. cholerae ΔcqsS ΔluxQ ΔvpsS ΔcqsR / pEVS143-cqsRF268I / 
pBB1  Sm Kan Tet  This study 

WN5354  V. cholerae ΔcqsS ΔluxQ ΔvpsS ΔcqsR / pEVS143-cqsRD171V 
/ pBB1  Sm Kan Tet  This study 

WN5781 V. cholerae ΔcqsS ΔluxQ ΔvpsS Δvc1554 Δvca0136  Sm This study 
WN5784 V. cholerae ΔcqsS ΔluxQ ΔvpsS Δvc1554 Δvca0136/pBB1 Sm Tet This study 
WN5886 V. cholerae ΔcqsS ΔluxQ ΔvpsS cqsRD198V Sm  This study 
WN5887 V. cholerae ΔcqsS ΔluxQ ΔvpsS cqsRD171V Sm This study 
WN5890 V. cholerae ΔcqsS ΔluxQ ΔvpsS cqsRD198V/ pBB1 Sm Tet This study 
WN5891 V. cholerae ΔcqsS ΔluxQ ΔvpsS cqsRD171V/ pBB1 Sm Tet This study 
WN5976 V. cholerae ΔcqsS ΔluxQ ΔvpsS /pBK1003 (Pqrr4-lux) Sm Cm This study 

WN5979 V. cholerae ΔcqsS ΔluxQ ΔvpsS Δvc1554 Δvca0136 / 
pBK1003  Sm Cm This study 

WN5980 V. cholerae ΔcqsS ΔluxQ ΔvpsS cqsRD198V / pBK1003 Sm Cm This study 
WN5981 V. cholerae ΔcqsS ΔluxQ ΔvpsS cqsRD171V / pBK1003 Sm Cm This study 
WN048 E. coli S17-1 λpir / pBB1 Tet (11) 
WN3705 E. coli  S17-1 λpir / pEVS143-cqsR  Kan (11) 
WN5233 E. coli XL10-Gold / pEVS143-cqsRV219E Kan This study 
WN5236 E. coli XL10-Gold / pEVS143-cqsRA259V Kan This study 
WN5239 E. coli XL10-Gold / pEVS143-cqsRH262Y Kan This study 
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WN5242 E. coli XL10-Gold / pEVS143-cqsRR49S  Kan This study 
WN5248  E. coli XL10-Gold / pEVS143-cqsRD198V Kan This study 
WN5250 E. coli XL10-Gold / pEVS143-cqsRL217S Kan This study 
WN5318 E. coli XL10-Gold / pEVS143-cqsRF268I Kan This study 
WN5326 E. coli BL21DE3/ pET28b cqsR -LBD  Kan This study 
WN5344 E. coli XL10-Gold / pEVS143-cqsRD171V  Kan This study 
WN5745 E. coli S17 λpir DAP- / pKAS::Kan Δvc1554 Kan This study 
WN5746 E. coli S17 λpir DAP- / pKAS::Kan Δvca0136 Kan This study 
WN5880 E. coli S17 λpir DAP- / pKAS::Kan cqsRD198V  Kan This study 
WN5881 E. coli S17 λpir DAP- / pKAS::Kan cqsRD171V Kan This study 

a Sm = Streptomycin, Kan = Kanamycin, Cm = Chloramphenicol, Tet = Tetracycline 489 
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Supplementary Table 2 491 

Binding activity of CqsR to common byproducts of ethanolamine 492 

Compound Tma 

None 47.00 

N-(2-hydroxyethyl)-acetamide 48.00 

N,N'-Bis(2-hydroxyethyl)-ethanediamide 49.00 

N-(2-hydroxyethyl)-2-[(2-hydroxyethyl)amino]-acetamide 47.67 [0.57] 

N-(2-hydroxyethyl)ethylenediamine 47.67 [0.57] 

N-(2-hydroxyethyl) imidazolidone 47.00 

N-(2-hydroxyethyl)-glycine 47.33 [0.57] 

N-(2-hydroxyethyl)-imidazole 47.33 [0.57] 

N-(2-hydroxyethyl)-formamide 50.00 
aData shown as average of 3 replicates in the presence of 1 mM tested compounds. Square brackets 493 
indicate standard deviation where applicable. 494 
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 496 

 497 

Supplementary Figure 1 498 

MST quantification (FNorm; normalized fluorescence) for ethanolamine binding to CqsR. 499 
Ethanolamine was titrated between 200 μM and 0.0061 μM with 20 nM His6-tagged CqsR. 500 
Ethanolamine binds to CqsR with a Kd of 0.478 ± 0.076 µM. Binding affinity was calculated from 501 
three independent experiments. 502 
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 504 

 505 

Supplementary Figure 2  506 

Effect of ethanolamine and its analogs on qrr4 transcription. 507 

Normalized bioluminescence production (lux/OD600) using a Pqrr4-lux reporter was measured in 508 
a ∆3 cqsR+ strain in the presence of 10 mM ethanolamine, L-alaninol, D-alaninol, or serinol. 509 
Blank indicates LB medium without added compound. 510 

 511 
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 513 

Supplementary Figure 3  514 

Ethanolamine induces high cell density QS response in a CqsR-specific manner 515 

HapR-dependent bioluminescence profiles (lux/OD600) were measured in A) ∆3 luxQ+, B) ∆3 516 
cqsS+, C) ∆3 cqsR+, and D) ∆3 vpsS+, in LB medium and LB medium containing 10 mM 517 
ethanolamine. Each figure shows a representative profile of each condition with two biological 518 
replicates. Each experiment was performed independently at least two times. 519 
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 520 

Supplementary Figure 4  521 

Effect of ethanolamine on qrr4 transcription in the double phosphodiesterase mutants. 522 

Normalized bioluminescence production (lux/OD600) using a Pqrr4-lux reporter was measured in 523 
a ∆3 cqsR+ and the isogenic ∆3 cqsR + ∆vc1554 ∆vca0136 strains with and without 10 mM 524 
ethanolamine. Each figure shows a representative profile of each condition with three biological 525 
replicates. Each experiment was performed independently at least two times. 526 
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Detail of chemical synthesis of HEGly and HEHEAA 528 

Unless otherwise noted, all reactions were performed in flame-dried glassware under an 529 

atmosphere of nitrogen using dried reagents and solvents. All chemicals were purchased from 530 

commercial vendors and used without further purification.  Anhydrous solvents were purchased 531 

from commercial vendors. Flash chromatography was performed using standard grade silica gel 532 

60 230-400 mesh from SORBENT Technologies or was performed using a Biotage Flash 533 

Purification system equipped with Biotage silica gel or C18 columns. Analytical thin-layer 534 

chromatography was carried out using Silica G TLC plates, 200 μm with UV254 fluorescent 535 

indicator (SORBENT Technologies), and visualization was performed by staining and/or by 536 

absorbance of UV light. NMR spectra were recorded using a Varian Mercury Plus spectrometer 537 

(400 MHz for 1H-NMR; 100 MHz for 13C-NMR). Chemical shifts are reported in parts per million 538 

(ppm) and were calibrated according to residual protonated solvent. Mass spectroscopy data was 539 

collected using an Agilent 1100-Series LC/MSD Trap LC-MS or a Micromass Quattromicro with 540 

a Waters 2795 Separations Module LC-MS with acetonitrile containing 0.1% formic acid as the 541 

mobile phase in positive ionization mode. All final compounds were evaluated to be of greater 542 

than 90% purity by analysis of 1H-NMR and 13C-NMR unless otherwise indicated. 543 

2-((2-Hydroxyethyl)amino)acetic Acid, HEGly. This compound was synthesized following the 544 

reported procedure (65) with modifications. Briefly, to a solution of ethanolamine (3.15 mL, 52.2 545 

mmol) in anhydrous THF (53mL) in a oven-dried flask was added i-Pr2NEt (9.4 mL, 54.0 mmol). 546 

The resulting solution was cooled to 0oC and was treated with ethyl bromoacetate (5mL, 547 

45.2mmol) dropwise. The mixture was stirred overnight with warming to room temperature and 548 

was concentrated in vacuo to remove solvent and was purified by silica gel flash chromatography 549 

to provide the ester, ethyl (2-hydroxyethyl)glycinate (3.5 g, 23.8 mmol, 53% yield). The ester, 550 
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ethyl (2-hydroxyethyl)glycinate (3.5g, 23.8 mmol) was dissolved in a solution of acetone (119mL) 551 

and water (119mL) and was treated with LiOH (4.99g, 119.01mmol) and stirred at room 552 

temperature overnight. The reaction was quenched by the addition of 119mL of 1M HCl and was 553 

concentrated to dryness in vacuo. The residue was purified by slow recrystallization from 554 

H2O/EtOH at 5oC to provide 2-((2-Hydroxyethyl)amino)acetic Acid, HEGly (1.10g, 9.2mmol, 555 

39% yield). Spectral data was consistent with previously reported data (65). 556 

N-(2-hydroxyethyl)-2-((2-hydroxyethyl)amino)acetamide, HEHEAA. 2-((2-557 

Hydroxyethyl)amino)acetic Acid (HEGly, 87 mg, 0.73 mmol) was dissolved in H2O (200 uL) with 558 

warming. The solution was diluted with ACN (1.5 mL) and was treated sequentially with i-Pr2Net 559 

(250 uL, 1.46 mmol), 2-aminoethanol (88 uL, 1.46 mmol), 1-Hydroxybenzotriazole (HOBt, 197 560 

mg, 1.46 mmol) and N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC, 279 561 

mg, 1.46 mmol). The resulting mixture was heated to 55 oC and was stirred overnight. The reaction 562 

mixture was concentrated to dryness and purified using C18 flash chromatography to provide N-563 

(2-hydroxyethyl)-2-((2-hydroxyethyl)amino)acetamide, HEHEAA. The product HEHEAA co-564 

eluted with 1-(3-(dimethylamino)propyl)-3-ethylurea and was characterized and used in biological 565 

studies as an inseparable ca. 1:1 mixture based on 1H-NMR and 13C-NMR.  566 

 567 
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