97 research outputs found

    Image transfer protocol in progressively increasing resolution

    Get PDF
    A method of transferring digital image data over a communication link transforms and orders the data so that, as data is received by a receiving station, a low detail version of the image is immediately generated with later transmissions of data providing progressively greater detail in this image. User instructions are accepted, limiting the ultimate resolution of the image or suspending enhancement of the image except in certain user defined regions. When a low detail image is requested followed by a request for a high detailed version of the same image, the originally transmitted data of the low resolution image is not discarded or retransmitted but used with later data to improve the originally transmitted image. Only a single copy of the transformed image need be retained by the transmitting device in order to satisfy requests for different amounts of image detail

    Instrumentation for high-resolution spectropolarimetry

    Get PDF
    ABSTRACT Linear spectropolarimetry of spectral lines is a neglected field in astronomy, largely because of the lack of instrumentation. Techniques that have been applied, but rarely, include investigation of the dynamics of scattering envelopes through the polarization of electron-or dust-scattered nebular light. Untried techniques include promising new magnetic diagnostics like the Hanle Effect in the far-ultraviolet and magnetic realignment in the visible. The University of Wisconsin Space Astronomy Lab is developing instrumentation for such investigations. In the visible, the Prime Focus Imaging Spectrograph (PFIS) is a first light instrument for the Southern African Large Telescope (SALT), which at an aperture of 11m will be the largest single telescope in the Southern Hemisphere. Scheduled for commissioning in late 2004, PFIS is a versatile highthroughput imaging spectrograph using volume-phase holographic gratings for spectroscopic programs from 320nm to 900nm at resolutions of R=500 to R=6000. A dual-etalon Fabry-Perot subsystem enables imaging spectroscopy at R=500 and R=3000 or 12,500. The polarization subsystem, consisting of a very large calcite polarizing beam-splitter used in conjunction with half-and quarter-wave Pancharatnam superachromatic plates, allow linear or circular polarimetric measurements in any of the spectroscopic modes. In the FUV, the Far-Ultraviolet SpectroPolarimeter (FUSP) is a sounding rocket payload, scheduled for its first flight in 2003, that will obtain the first high-precision spectropolarimetry from 105 -150 nm, and the first astronomical polarimetry of any kind below 130 nm. The 50 cm primary mirror of the telescope is F/2.5. At the prime focus are the polarimetric optics, a stressed lithium fluoride rotating waveplate, followed by a synthetic diamond Brewsterangle mirror. The spectrometer uses an aberration-corrected spherical holographic grating and a UV-sensitized CCD detector, for a spectral resolution of R=1800

    The NEID Precision Radial Velocity Spectrometer: Port Adapter Overview, Requirements, and Test Plan

    Get PDF
    The NEID spectrometer is an optical (380-930 nm), fiber-fed, precision Doppler spectrometer currently in development for the WIYN 3.5 m telescope at Kitt Peak National Observatory as part of the NN-EXPLORE partnership. Designed to achieve a radial velocity precision of < 30 cm/s, NEID will be sensitive enough to detect terrestrial-mass exoplanets around low-mass stars. Light from the target stars is focused by the telescope to a bent Cassegrain port at the edge of the primary mirror mechanical support. The specialized NEID "Port Adapter" system is mounted at this bent Cassegrain port and is responsible for delivering the incident light from the telescope to the NEID fibers. In order to provide stable, high-quality images to the science instrument, the Port Adapter houses several sub-components designed to acquire the target stars, correct for atmospheric dispersion, stabilize the light onto the science fibers, and calibrate the spectrometer by injecting known wavelength sources such as a laser frequency comb. Here we provide an overview of the overall opto-mechanical design and system requirements of the Port Adapter. We also describe the development of system error budgets and testplans to meet those requirements

    The NEID precision radial velocity spectrometer: Commissioning of the Port Adapter

    Get PDF
    In October 2019, the NEID instrument (PI Suvrath Mahadevan, PSU) was delivered to the WIYN 3.5 m Telescope at Kitt Peak National Observatory. Commissioning began shortly after delivery, but was paused due to a COVID-19 imposed observatory shutdown in March 2020. The observatory has recently reopened and NEID commissioning has resumed. NEID is an optical (380-930 nm), fiber-fed, precision Doppler radial velocity system developed as part of the NN-EXPLORE partnership. While the spectrometer and calibration system are maintained in a highly controlled environment on the basement level of the WIYN, the NEID Port Adapter mounts directly to a bent-Cassegrain port on the telescope and is responsible for precisely and stably placing target light on the science fibers. Here we present a brief overview of the as-built Port Adapter and its sub-components. We then discuss preliminary on-sky performance compared to requirements as well as next steps as we complete commissioning

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly alpha forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from submitted version

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    Jowett’s Thucydides: A corpus-based analysis of translation as political intervention

    Get PDF
    Thucydides’ History of the Peloponnesian War is a key text in the classical Greek canon and an important source of insights into the structures and tensions at the heart of ancient Athenian democracy. Consequently, modern interpretations of his analysis have repeatedly played a major role in shaping debates on the viability and desirability of democratic rule. This paper aims to build on previous discussion of Benjamin Jowett's 1881 translation of Thucydides by applying a comparative corpus-based methodology to explore how this translator's own personal politics shaped his re-presentation of this text. The analysis reveals a striking emphasis on the position and activity of democratic leaders throughout Jowett’s version, strongly consistent with the ideology of leadership that he developed during his career as Master of Balliol College, Oxford
    corecore