192 research outputs found

    A Case Study of Urban Streamside Salamander Persistence in Staten Island, NY

    Get PDF
    We monitored salamander populations in four stream segments on Staten Island, New York, from 2000 to 2012. We found three salamander species in our study. Two streams had all three species: a headwater stream (Reed’s Basket Willow) and a third-order stream (BloodrootValley). We found Eurycea bislineata and Desmognathus fuscus in all streams, although the frequency of occurrence and densities of these species differed markedly among streams. Reed’s Basket Willow had significantly greater populations of E.bislineata and D. fuscus than the other three, higher order, streams. Pseudotriton ruber was found only on two occasions each in Reed’s Basket Willow and Bloodroot Valley. We found lower population densities than that reported in other studies for both Eurycea bislineata and Desmognathus fuscus. The maximum density we recorded for E. bislineata was 14.4 individuals/m2 on one occasion in one stream and for D. fuscus 0.3 individuals/m2 on several occasions. Despite the low densities, and seasonal and yearly variability, the populations have not shown any noticeable trends in the twelve years of our study and appear stable. We measured sediment deposition and found the highest amount deposited in Reed’s Basket Willow. Because this stream also has the highest population densities, our results suggest that sediment does not always have a negative impact on streamside salamanders. We measured impervious cover in the watershed and found that it did not correspond to increased salamander densities; Reed’s Basket Willow had the highest salamander densities despite having the highest percent impervious cover. However, Reed’s had the lowest percent impervious cover in its buffer. The stream with the lowest densities was a second-order stream downstream from a dam in place for at least 80 years at the start of our study. Egbertville Ravine, which lies below a dam constructed in 2003, has not shown a declining trend in population densities, although the 2012 sampling showed a decrease that was not experienced at the other three sites. Within urban areas, local impacts such as stream order, dams and adjacent land cover may obscure effects of landscape scale factors

    Alpha-Synuclein Disrupted Dopamine Homeostasis Leads to Dopaminergic Neuron Degeneration in Caenorhabditis elegans

    Get PDF
    This is the publisher's version, also available electronically from http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0009312Disruption of dopamine homeostasis may lead to dopaminergic neuron degeneration, a proposed explanation for the specific vulnerability of dopaminergic neurons in Parkinson's disease. While expression of human α-synuclein in C. elegans results in dopaminergic neuron degeneration, the effects of α-synuclein on dopamine homeostasis and its contribution to dopaminergic neuron degeneration in C. elegans have not been reported. Here, we examined the effects of α-synuclein overexpression on worm dopamine homeostasis. We found that α-synuclein expression results in upregulation of dopamine synthesis and content, and redistribution of dopaminergic synaptic vesicles, which significantly contribute to dopaminergic neuron degeneration. These results provide in vivo evidence supporting a critical role for dopamine homeostasis in supporting dopaminergic neuron integrity

    Conservation genetics of extremely isolated urban populations of the northern dusky salamander (Desmognathus fuscus) in New York City

    Get PDF
    Urbanization is a major cause of amphibian decline. Stream-dwelling plethodontid salamanders are particularly susceptible to urbanization due to declining water quality and hydrological changes, but few studies have examined these taxa in cities. The northern dusky salamander (Desmognathus fuscus) was once common in the New York City metropolitan area, but has substantially declined throughout the region in recent decades. We used five tetranucleotide microsatellite loci to examine population differentiation, genetic variation, and bottlenecks among five remnant urban populations of dusky salamanders in NYC. These genetic measures provide information on isolation, prevalence of inbreeding, long-term prospects for population persistence, and potential for evolutionary responses to future environmental change. All populations were genetically differentiated from each other, and the most isolated populations in Manhattan have maintained very little genetic variation (i.e. \u3c20% heterozygosity). A majority of the populations also exhibited evidence of genetic bottlenecks. These findings contrast with published estimates of high genetic variation within and lack of structure between populations of other desmognathine salamanders sampled over similar or larger spatial scales. Declines in genetic variation likely resulted from population extirpations and the degradation of stream and terrestrial paths for dispersal in NYC. Loss of genetic variability in populations isolated by human development may be an underappreciated cause and/or consequence of the decline of this species in urbanized areas of the northeast USA

    Serotonin-2C and -2a receptor co-expression on cells in the rat medial prefrontal cortex

    Get PDF
    Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin -2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a complex interplay of cortical 5-HT2A and 5-HT2C receptor mechanisms exists, which if altered, could modulate efferent brain systems implicated in mental illness

    Pyramidal Neurons in Rat Prefrontal Cortex Projecting to Ventral Tegmental Area and Dorsal Raphe Nucleus Express 5-HT2A Receptors

    Get PDF
    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotics modulate cortico-limbic circuits mainly through subcortical D2 receptor blockade, whereas second generation (atypical) antipsychotics preferentially target cortical 5-HT receptors. Anatomical and functional evidence supports a PFC-based control of the brainstem monoaminergic nuclei. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of PFC pyramidal neurons projecting to the dorsal raphe (DR) and/or ventral tegmental area (VTA) express 5-HT2A receptors. Cholera-toxin B application into the DR and the VTA retrogradely labeled projection neurons in the medial PFC (mPFC) and in orbitofrontal cortex (OFC). In situ hybridization of 5-HT2A receptor mRNA in the same tissue sections labeled a large neuronal population in mPFC and OFC. The percentage of DR-projecting neurons expressing 5-HT2A receptor mRNA was ∼60% in mPFC and ∼75% in OFC (n = 3). Equivalent values for VTA-projecting neurons were ∼55% in both mPFC and ventral OFC. Thus, 5-HT2A receptor activation/blockade in PFC may have downstream effects on dopaminergic and serotonergic systems via direct descending pathways. Atypical antipsychotics may distally modulate monoaminergic cells through PFC 5-HT2A receptor blockade, presumably decreasing the activity of neurons receiving direct cortical inputs

    5-HT2A receptor signalling through phospholipase D1 associated with its C-terminal tail

    Get PDF
    The 5-HT2AR (5-hydroxytryptamine-2A receptor) is a GPCR (G-protein-coupled receptor) that is implicated in the actions of hallucinogens and represents a major target of atypical antipsychotic agents. In addition to its classical signalling though PLC (phospholipase C), the receptor can activate several other pathways, including ARF (ADP-ribosylation factor)-dependent activation of PLD (phospholipase D), which appears to be achieved through a mechanism independent of heterotrimeric G-proteins. In the present study we show that wild-type and inactive constructs of PLD1 (but not PLD2) respectively facilitate and inhibit ARF-dependent PLD signalling by the 5-HT2AR. Furthermore we demonstrate that PLD1 specifically co-immunoprecipitates with the receptor and binds to a distal site in GST (glutathione transferase) fusion protein constructs of its C-terminal tail which is distinct from the ARF-interaction site, thereby suggesting the existence of a functional ARF-PLD signalling complex directly associated with this receptor. This reveals the spatial co-ordination of an important GPCR, transducer and effector into a physical complex that is likely to reinforce the impact of receptor activation on a heterotrimeric G-protein-independent signalling pathway. Signalling of this receptor through such non-canonical pathways may be important to its role in particular disorders

    A Pivotal Role of Lumbar Spinothalamic Cells in the Regulation of Ejaculation via Intraspinal Connections

    Full text link
    Introduction.  A population of lumbar spinothalamic cells (LSt cells) has been demonstrated to play a pivotal role in ejaculatory behavior and comprise a critical component of the spinal ejaculation generator. LSt cells are hypothesized to regulate ejaculation via their projections to autonomic and motor neurons in the lumbosacral spinal cord. Aim.  The current study tested the hypothesis that ejaculatory reflexes are dependent on LSt cells via projections within the lumbosacral spinal cord. Methods.  Male rats received intraspinal injections of neurotoxin saporin conjugated to substance P analog, previously shown to selectively lesion LSt cells. Two weeks later, males were anesthetized and spinal cords were transected. Subsequently, males were subjected to ejaculatory reflex paradigms, including stimulation of the dorsal penile nerve (DPN), urethrogenital stimulation or administration of D3 agonist 7‐OH‐DPAT. Electromyographic recordings of the bulbocavernosus muscle (BCM) were analyzed for rhythmic bursting characteristic of the expulsion phase of ejaculation. In addition, a fourth commonly used paradigm for ejaculation and erections in unanesthetized, spinal‐intact male rats was utilized: the ex copula reflex paradigm. Main Outcome Measures.  LSt cell lesions were predicted to prevent rhythmic bursting of BCM following DPN, urethral, or pharmacological stimulation, and emissions in the ex copula paradigm. In contrast, LSt cell lesions were not expected to abolish erectile function as measured in the ex copula paradigm. Results.  LSt cell lesions prevented rhythmic contractions of the BCM induced by any of the ejaculatory reflex paradigms in spinalized rats. However, LSt cell lesions did not affect erectile function nor emissions determined in the ex copula reflex paradigm. Conclusions.  These data demonstrate that LSt cells are essential for ejaculatory, but not erectile reflexes, as previously reported for mating animals. Moreover, LSt cells mediate ejaculation via projections within the spinal cord, presumably to autonomic and motor neurons. Staudt MD, Truitt WA, McKenna KE, de Oliveira CVR, Lehman MN, and Coolen LM. A pivotal role of lumbar spinothalamic cells in the regulation of ejaculation via intraspinal connections. J Sex Med 2012;9:2256–2265.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93690/1/j.1743-6109.2011.02574.x.pd
    corecore