174 research outputs found

    Anti-inflammatory Effects of Abdominal Vagus Nerve Stimulation on Experimental Intestinal Inflammation

    Get PDF
    Electrical stimulation of the cervical vagus nerve is an emerging treatment for inflammatory bowel disease (IBD). However, side effects from cervical vagal nerve stimulation (VNS) are often reported by patients. Here we hypothesized that stimulating the vagus nerve closer to the end organ will have fewer off-target effects and will effectively reduce intestinal inflammation. Specifically, we aimed to: (i) compare off-target effects during abdominal and cervical VNS; (ii) verify that VNS levels were suprathreshold; and (iii) determine whether abdominal VNS reduces chemically-induced intestinal inflammation in rats. An electrode array was developed in-house to stimulate and record vagal neural responses. In a non-recovery experiment, stimulation-induced off-target effects were measured by implanting the cervical and abdominal vagus nerves of anaesthetized rats (n = 5) and recording changes to heart rate, respiration and blood pressure during stimulation (10 Hz; symmetric biphasic current pulse; 320 nC per phase). In a chronic experiment, the efficacy of VNS treatment was assessed by implanting an electrode array onto the abdominal vagus nerve and recording in vivo electrically-evoked neural responses during the implantation period. After 14 days, the intestine was inflamed with TNBS (2.5% 2,4,6-trinitrobenzene sulphonic acid) and rats received therapeutic VNS (n = 7; 10 Hz; 320 nC per phase; 3 h/day) or no stimulation (n = 8) for 4.5 days. Stool quality, plasma C-reactive protein and histology of the inflamed intestine were assessed. Data show that abdominal VNS had no effect (two-way RM-ANOVA: P ≥ 0.05) on cardiac, respiratory and blood pressure parameters. However, during cervical VNS heart rate decreased by 31 ± 9 beats/minute (P ≥ 0.05), respiration was inhibited and blood pressure decreased. Data addressing efficacy of VNS treatment show that electrically-evoked neural response thresholds remained stable (one-way RM ANOVA: P ≥ 0.05) and therapeutic stimulation remained above threshold. Chronically stimulated rats, compared to unstimulated rats, had improved stool quality (two-way RM ANOVA: P < 0.0001), no blood in feces (P < 0.0001), reduced plasma C-reactive protein (two-way RM ANOVA: P < 0.05) and a reduction in resident inflammatory cell populations within the intestine (Kruskal–Wallis: P < 0.05). In conclusion, abdominal VNS did not evoke off-target effects, is an effective treatment of TNBS-induced inflammation, and may be an effective treatment of IBD in humans

    Combined optogenetic and electrical stimulation of the sciatic nerve for selective control of sensory fibers

    Get PDF
    IntroductionElectrical stimulation offers a drug-free alternative for the treatment of many neurological conditions, such as chronic pain. However, it is not easy to selectively activate afferent or efferent fibers of mixed nerves, nor their functional subtypes. Optogenetics overcomes these issues by controlling activity selectively in genetically modified fibers, however the reliability of responses to light are poor compared to electrical stimulation and the high intensities of light required present considerable translational challenges. In this study we employed a combined protocol of optical and electrical stimulation to the sciatic nerve in an optogenetic mouse model to allow for better selectivity, efficiency, and safety to overcome fundamental limitations of electrical-only and optical-only stimulation.MethodsThe sciatic nerve was surgically exposed in anesthetized mice (n = 12) expressing the ChR2-H134R opsin via the parvalbumin promoter. A custom-made peripheral nerve cuff electrode and a 452 nm laser-coupled optical fiber were used to elicit neural activity utilizing optical-only, electrical-only, or combined stimulation. Activation thresholds for the individual and combined responses were measured.ResultsOptically evoked responses had a conduction velocity of 34.3 m/s, consistent with ChR2-H134R expression in proprioceptive and low-threshold mechanoreceptor (Aα/Aβ) fibers which was also confirmed via immunohistochemical methods. Combined stimulation, utilizing a 1 ms near-threshold light pulse followed by an electrical pulse 0.5 ms later, approximately halved the electrical threshold for activation (p = 0.006, n = 5) and resulted in a 5.5 dB increase in the Aα/Aβ hybrid response amplitude compared to the electrical-only response at equivalent electrical levels (p = 0.003, n = 6). As a result, there was a 3.25 dB increase in the therapeutic stimulation window between the Aα/Aβ fiber and myogenic thresholds (p = 0.008, n = 4).DiscussionThe results demonstrate that light can be used to prime the optogenetically modified neural population to reside near threshold, thereby selectively reducing the electrical threshold for neural activation in these fibers. This reduces the amount of light needed for activation for increased safety and reduces potential off-target effects by only stimulating the fibers of interest. Since Aα/Aβ fibers are potential targets for neuromodulation in chronic pain conditions, these findings could be used to develop effective strategies to selectively manipulate pain transmission pathways in the periphery

    Physiological Costs of Repetitive Courtship Displays in Cockroaches Handicap Locomotor Performance

    Get PDF
    Courtship displays are typically thought to have evolved via female choice, whereby females select mates based on the characteristics of a display that is expected to honestly reflect some aspect of the male’s quality. Honesty is typically enforced by mechanistic costs and constraints that limit the level at which a display can be performed. It is becoming increasingly apparent that these costs may be energetic costs involved in the production of dynamic, often repetitive displays. A female attending to such a display may thus be assessing the physical fitness of a male as an index of his quality. Such assessment would provide information on his current physical quality as well as his ability to carry out other demanding activities, qualities with which a choosy female should want to provision her offspring. In the current study we use courtship interactions in the Cuban burrowing cockroach, Byrsotria fumigata to directly test whether courtship is associated with a signaler’s performance capacity. Males that had produced courtship displays achieved significantly lower speeds and distances in locomotor trials than non-courting control males. We also found that females mated more readily with males that produced a more vigorous display. Thus, males of this species have developed a strategy where they produce a demanding courtship display, while females choose males based on their ability to produce this display. Courtship displays in many taxa often involve dynamic repetitive actions and as such, signals of stamina in courtship may be more widespread than previously thought

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models

    Get PDF
    Projection of the contribution of ice sheets to sea level change as part of the Coupled Model Intercomparison Project Phase 6 (CMIP6) takes the form of simulations from coupled ice sheet–climate models and stand-alone ice sheet models, overseen by the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). This paper describes the experimental setup for process-based sea level change projections to be performed with stand-alone Greenland and Antarctic ice sheet models in the context of ISMIP6. The ISMIP6 protocol relies on a suite of polar atmospheric and oceanic CMIP-based forcing for ice sheet models, in order to explore the uncertainty in projected sea level change due to future emissions scenarios, CMIP models, ice sheet models, and parameterizations for ice–ocean interactions. We describe here the approach taken for defining the suite of ISMIP6 stand-alone ice sheet simulations, document the experimental framework and implementation, and present an overview of the ISMIP6 forcing to be used by participating ice sheet modeling groups

    2008 Inter-laboratory Comparison Study of a Reference Material for Nutrients in Seawater

    Get PDF
    Autoclaved natural seawater collected in the North Pacific Ocean was used as a reference material for nutrients in seawater (RMNS) during an inter-laboratory comparison (I/C) study conducted in 2008. This study was a follow-up to previous studies conducted in 2003 and 2006. A set of six samples was distributed to each of 58 laboratories in 15 countries around the globe, and results were returned by 54 of those laboratories (15 countries). The homogeneities of samples used in the 2008 I/C study, based on analyses for three determinants, were improved compared to those of samples used in the 2003 and 2006 I/C studies. Results of these I/C studies indicate that most of the participating laboratories have an analytical technique for nutrients that is sufficient to provide data of high comparability. The differences between reported concentrations from the same laboratories in the 2006 and 2008 I/C studies for the same batch of RMNS indicate that most of the laboratories have been maintaining internal comparability for two years. Thus, with the current high level of performance in the participating laboratories, the use of a common reference material and the adaptation of an internationally accepted nutrient scale system would increase comparability among laboratories worldwide, and the use of a certified reference material would establish traceability. In the 2008 I/C study we observed a problem of non-linearity of the instruments of the participating laboratories similar to that observed among the laboratories in the 2006 I/C study. This problem of non-linearity should be investigated and discussed to improve comparability for the full range of nutrient concentrations. For silicate comparability in particular, we see relatively larger consensus standard deviations than those for nitrate and phosphate

    Regulation of human CD4+ T cell differentiation

    Get PDF
    Naive CD4+ T cells differentiate into specific effector subsets—Th1, Th2, Th17, and T follicular helper (Tfh)—that provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4+ T cell differentiation in vitro. IL12Rβ1/TYK2 and IFN-γR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10–secreting cells. IL12Rβ1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4+ T cell effector function in the settings of infection, vaccination, or immune dysregulation

    Damaged DNA Binding Protein 2 Plays a Role in Breast Cancer Cell Growth

    Get PDF
    The Damaged DNA binding protein 2 (DDB2), is involved in nucleotide excision repair as well as in other biological processes in normal cells, including transcription and cell cycle regulation. Loss of DDB2 function may be related to tumor susceptibility. However, hypothesis of this study was that DDB2 could play a role in breast cancer cell growth, resulting in its well known interaction with the proliferative marker E2F1 in breast neoplasia. DDB2 gene was overexpressed in estrogen receptor (ER)-positive (MCF-7 and T47D), but not in ER-negative breast cancer (MDA-MB231 and SKBR3) or normal mammary epithelial cell lines. In addition, DDB2 expression was significantly (3.0-fold) higher in ER-positive than in ER-negative tumor samples (P = 0.0208) from 16 patients with breast carcinoma. Knockdown of DDB2 by small interfering RNA in MCF-7 cells caused a decrease in cancer cell growth and colony formation. Inversely, introduction of the DDB2 gene into MDA-MB231 cells stimulated growth and colony formation. Cell cycle distribution and 5 Bromodeoxyuridine incorporation by flow cytometry analysis showed that the growth-inhibiting effect of DDB2 knockdown was the consequence of a delayed G1/S transition and a slowed progression through the S phase of MCF-7 cells. These results were supported by a strong decrease in the expression of S phase markers (Proliferating Cell Nuclear Antigen, cyclin E and dihydrofolate reductase). These findings demonstrate for the first time that DDB2 can play a role as oncogene and may become a promising candidate as a predictive marker in breast cancer
    corecore