375 research outputs found

    So near and yet so far: harmonic radar reveals reduced homing ability of Nosema infected honeybees.

    Get PDF
    © 2014 Wolf et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Citation: Wolf S, McMahon DP, Lim KS, Pull CD, Clark SJ, et al. (2014) So Near and Yet So Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees. PLoS ONE 9(8): e103989. doi:10.1371/journal.pone.0103989Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen--Nosema ceranae (Microsporidia)--on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8%) versus healthy foragers (92.5%). Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed.Biotechnology and Biological Sciences Research Council (BBSRC)Department for Environment Food & Rural Affairs (DEFRA)Natural Environment Research Council (NERC)The Scottish GovernmentWellcome Trus

    Elevated virulence of an emerging viral genotype as a driver of honeybee loss.

    Get PDF
    PublishedJournal ArticleEmerging infectious diseases (EIDs) have contributed significantly to the current biodiversity crisis, leading to widespread epidemics and population loss. Owing to genetic variation in pathogen virulence, a complete understanding of species decline requires the accurate identification and characterization of EIDs. We explore this issue in the Western honeybee, where increasing mortality of populations in the Northern Hemisphere has caused major concern. Specifically, we investigate the importance of genetic identity of the main suspect in mortality, deformed wing virus (DWV), in driving honeybee loss. Using laboratory experiments and a systematic field survey, we demonstrate that an emerging DWV genotype (DWV-B) is more virulent than the established DWV genotype (DWV-A) and is widespread in the landscape. Furthermore, we show in a simple model that colonies infected with DWV-B collapse sooner than colonies infected with DWV-A. We also identify potential for rapid DWV evolution by revealing extensive genome-wide recombination in vivo The emergence of DWV-B in naive honeybee populations, including via recombination with DWV-A, could be of significant ecological and economic importance. Our findings emphasize that knowledge of pathogen genetic identity and diversity is critical to understanding drivers of species decline.This work was supported by the Federal Ministry of Food, Agriculture and Consumer Protection (Germany): Fit Bee project (grant 511-06.01-28-1-71.007-10), the EU: BeeDoc (grant 244956), iDiv (2013 NGS-Fast Track grant W47004118) and the Insect Pollinators Initiative (IPI grant BB/I000100/1 and BB/I000151/1). The IPI is funded jointly by the Biotechnology and Biological Sciences Research Council, the Department for Environment, Food and Rural Affairs, the Natural Environment Research Council, the Scottish Government and the Wellcome Trust, under the Living with Environmental Change Partnership

    Brain transcriptomes of honey bees (Apis mellifera) experimentally infected by two pathogens: Black queen cell virus and Nosema ceranae.

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Regulation of gene expression in the brain plays an important role in behavioral plasticity and decision making in response to external stimuli. However, both can be severely affected by environmental factors, such as parasites and pathogens. In honey bees, the emergence and re-emergence of pathogens and potential for pathogen co-infection and interaction have been suggested as major components that significantly impaired social behavior and survival. To understand how the honey bee is affected and responds to interacting pathogens, we co-infected workers with two prevalent pathogens of different nature, the positive single strand RNA virus Black queen cell virus (BQCV), and the Microsporidia Nosema ceranae, and explored gene expression changes in brains upon single infections and co-infections. Our data provide an important resource for research on honey bee diseases, and more generally on insect host-pathogen and pathogen-pathogen interactions. Raw and processed data are publicly available in the NCBI/GEO database: (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE81664.Sequencing was performed thanks to the EU-funded 7th Framework project BEE DOC, Grant Agreement 244956. The authors thank Maureen Labarussias for technical support during bee experiments and preparation for sequencing

    Identification of 24 new microsatellite loci in the sweat bee Lasioglossum malachurum (Hymenoptera: Halictidae)

    Get PDF
    OBJECTIVE: The objective here is to identify highly polymorphic microsatellite loci for the Palaearctic sweat bee Lasioglossum malachurum. Sweat bees (Hymenoptera: Halictidae) are widespread pollinators that exhibit an unusually large range of social behaviours from non-social, where each female nests alone, to eusocial, where a single queen reproduces while the other members of the colony help to rear her offspring. They thus represent excellent models for understanding social evolution. RESULTS: 24 new microsatellite loci were successfully optimized. When amplified across 23-40 unrelated females, the number of alleles per locus ranged from 3 to 17 and the observed heterozygosities 0.45 to 0.95. Only one locus showed evidence of significant deviation from Hardy-Weinberg equilibrium. No evidence of linkage disequilibrium was found. These 24 loci will enable researchers to gain greater understanding of colony relationships within this species, an important model for the study of eusociality. Furthermore, 22 of the same loci were also successfully amplified in L. calceatum, suggesting that these loci may be useful for investigating the ecology and evolution of sweat bees in general

    Optimal search patterns in honeybee orientation flights are robust against emerging infectious diseases.

    Get PDF
    Published onlineJournal ArticleLévy flights are scale-free (fractal) search patterns found in a wide range of animals. They can be an advantageous strategy promoting high encounter rates with rare cues that may indicate prey items, mating partners or navigational landmarks. The robustness of this behavioural strategy to ubiquitous threats to animal performance, such as pathogens, remains poorly understood. Using honeybees radar-tracked during their orientation flights in a novel landscape, we assess for the first time how two emerging infectious diseases (Nosema sp. and the Varroa-associated Deformed wing virus (DWV)) affect bees' behavioural performance and search strategy. Nosema infection, unlike DWV, affected the spatial scale of orientation flights, causing significantly shorter and more compact flights. However, in stark contrast to disease-dependent temporal fractals, we find the same prevalence of optimal Lévy flight characteristics (μ ≈ 2) in both healthy and infected bees. We discuss the ecological and evolutionary implications of these surprising insights, arguing that Lévy search patterns are an emergent property of fundamental characteristics of neuronal and sensory components of the decision-making process, making them robust against diverse physiological effects of pathogen infection and possibly other stressors.This study was funded jointly by a grant from BBSRC, Defra, NERC, the Scottish Government and the Wellcome Trust, under the Insect Pollinators Initiative (grant numbers BB/I00097/1 and BB/I000100/1). Additional support came from the Deutsche Forschungsgemeinschaft (DFG, grant number WO 1745/2-1) to S.W. Rothamsted Research is a national institute of bioscience strategically funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC)

    Genetic variability in five populations of Partamona helleri (Hymenoptera, Apidae) from Minas Gerais State, Brazil

    Get PDF
    Partamona is a Neotropical genus of stingless bees that comprises 33 species distributed from Mexico to southern Brazil. These bees are well-adapted to anthropic environments and build their nests in several substrates. In this study, 66 colonies of Partamona helleri from five localities in the Brazilian state of Minas Gerais (São Miguel do Anta, Teixeiras, Porto Firme, Viçosa and Rio Vermelho) were analyzed using nine microsatellite loci in order to assess their genetic variability. Low levels of observed (Ho = 0.099-0.137) and expected (H e = 0.128-0.145) heterozygosity were encountered and revealed discrete genetic differentiation among the populations (F ST = 0.025). AMOVA further showed that most of the total genetic variation (94.24%) in P. helleri was explained by the variability within local populations

    Comparative study on the use of specific and heterologous microsatellite primers in the stingless bees Melipona rufiventris and M. mondury (Hymenoptera, Apidae)

    Get PDF
    Due to their high degree of polymorphism, microsatellites are considered useful tools for studying population genetics. Nevertheless, studies of genetic diversity in stingless bees by means of these primers have revealed a low level of polymorphism, possibly the consequence of the heterologous primers used, since in most cases these were not specifically designed for the species under consideration. Herein we compared the number of polymorphic loci and alleles per locus, as well as observed heterozygosity in Melipona rufiventris and M. mondury populations, using specific and heterologous primers. The use of specific primers placed in evidence the greater frequency of polymorphic loci and alleles per locus, besides an expressive increase in observed heterozygosity in M. rufiventris and M. mondury, thereby reinforcing the idea that populational studies should be undertaken by preferably using species-specific microsatellite primers

    The cost of promiscuity: sexual transmission of Nosema microsporidian parasites in polyandrous honey bees

    Get PDF
    Multiple mating (and insemination) by females with different males, polyandry, is widespread across animals, due to material and/or genetic benefits for females. It reaches particularly high levels in some social insects, in which queens can produce significantly fitter colonies by being polyandrous. It is therefore a paradox that two thirds of eusocial hymenopteran insects appear to be exclusively monandrous, in spite of the fitness benefits that polyandry could provide. One possible cost of polyandry could be sexually transmitted parasites, but evidence for these in social insects is extremely limited. Here we show that two different species of Nosema microsporidian parasites can transmit sexually in the honey bee Apis mellifera. Honey bee males that are infected by the parasite have Nosema spores in their semen, and queens artificially inseminated with either Nosema spores or the semen of Nosema-infected males became infected by the parasite. The emergent and more virulent N. ceranae achieved much higher rates of infection following insemination than did N. apis. The results provide the first quantitative evidence of a sexually transmitted disease (STD) in social insects, indicating that STDs may represent a potential cost of polyandry in social insects

    Appointing Women to Boards: Is There a Cultural Bias?

    Get PDF
    Companies that are serious about corporate governance and business ethics are turning their attention to gender diversity at the most senior levels of business (Institute of Business Ethics, Business Ethics Briefing 21:1, 2011). Board gender diversity has been the subject of several studies carried out by international organizations such as Catalyst (Increasing gender diversity on boards: Current index of formal approaches, 2012), the World Economic Forum (Hausmann et al., The global gender gap report, 2010), and the European Board Diversity Analysis (Is it getting easier to find women on European boards? 2010). They all lead to reports confirming the overall relatively low proportion of women on boards and the slow pace at which more women are being appointed. Furthermore, the proportion of women on corporate boards varies much across countries. Based on institutional theory, this study hypothesizes and tests whether this variation can be attributed to differences in cultural settings across countries. Our analysis of the representation of women on boards for 32 countries during 2010 reveals that two cultural characteristics are indeed associated with the observed differences. We use the cultural dimensions proposed by Hofstede (Culture’s consequences: International differences in work-related values, 1980) to measure this construct. Results show that countries which have the greatest tolerance for inequalities in the distribution of power and those that tend to value the role of men generally exhibit lower representations of women on boards
    corecore