321 research outputs found

    Constraints on Cosmology and Gravity from the Dynamics of Voids

    Full text link
    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ωm=0.281±0.031\Omega_\mathrm{m}=0.281\pm0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089f/b=0.417\pm0.089 at median redshift zˉ=0.57\bar{z}=0.57, where bb is the galaxy bias (68%68\% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ε=1.003±0.012\varepsilon = 1.003\pm0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.Comment: 11 pages, 7 figures. Reflects published version in PRL including Supplemental Materia

    Estimation of fiber diameters in the spinal dorsal columns from clinical data

    Get PDF
    Lack of human morphometric data regarding the largest nerve fibers in the dorsal columns (DCs) of the spinal cord has lead to the estimation of the diameters of these fibers from clinical data retrieved from patients with a new spinal cord stimulation (SCS) system. These patients indicated the perception threshold of stimulation induced paresthesia in various body segments, while the stimulation amplitude was increased. The fiber diameters were calculated with a computer model, developed to calculate the effects of SCS on spinal nerve fibers. This computer model consists of two parts: (1) a three-dimensional (3-D) volume conductor model of a spinal cord segment in which the potential distribution due to electrical stimulation is calculated and (2) an electrical equivalent cable model of myelinated nerve fiber, which uses the calculated potential field to determine the threshold stimulus needed for activation. It is shown that the largest fibers in the medial DCs are significantly smaller than the largest fibers in the lateral parts. This finding is in accordance with the fiber distribution in cat, derived from the corresponding propagation velocities. Moreover, it is shown that the mediolateral increase in fiber diameter is mainly confined to the lateral parts of the DCs. Implementation of this mediolateral fiber diameter distribution of the DCs in the computer model enables the prediction of the recruitment order of dermatomal paresthesias following increasing electrical stimulation amplitud

    Aqueous Processes and Microbial Habitability of Gale Crater Sediments from the Blunts Point to the Glenn Torridon Clay Unit

    Get PDF
    A driving factor for sending the Mars Science Laboratory, Curiosity rover to Gale Crater was the orbital detection of clay minerals in the Glen Torridon (GT) clay unit. Clay mineral detections in GT suggested a past aqueous environment that was habitable, and could contain organic evidence of past microbiology. The mission of the Sample Analysis at Mars (SAM) instrument onboard Curiosity was to detect organic evidence of past microbiology and to detect volatile bearing mineralogy that can inform on whether past geochemical conditions would have supported microbiological activity. The objective of this work was to 1) evaluate the depositional/alteration conditions of Blunts Point (BP) to GT sediments 2) search for evidence of organics, and 3) evaluate microbial habitability in the BP, Vera Rubin Ridge (VRR), and GT sedimentary rock

    A first estimate of radio halo statistics from large-scale cosmological simulation

    Full text link
    We present a first estimate based on a cosmological gasdynamics simulation of galaxy cluster radio halo counts to be expected in forthcoming low-frequency radio surveys. Our estimate is based on a FLASH simulation of the LCDM model for which we have assigned radio power to clusters via a model that relates radio emissivity to cluster magnetic field strength, intracluster turbulence, and density. We vary several free parameters of this model and find that radio halo number counts vary by up to a factor of two for average magnetic fields ranging from 0.2 to 3.1 uG. However, we predict significantly fewer low-frequency radio halos than expected from previous semi-analytic estimates, although this discrepancy could be explained by frequency-dependent radio halo probabilities as predicted in reacceleration models. We find that upcoming surveys will have difficulty in distinguishing models because of large uncertainties and low number counts. Additionally, according to our modeling we find that expected number counts can be degenerate with both reacceleration and hadronic secondary models of cosmic ray generation. We find that relations between radio power and mass and X-ray luminosity may be used to distinguish models, and by building mock radio sky maps we demonstrate that surveys such as LOFAR may have sufficient resolution and sensitivity to break this model degeneracy by imaging many individual clusters.Comment: 18 pages, 14 figures, revised from referee comments, ApJ accepted, public catalog available at http://sipapu.astro.illinois.edu/http://sipapu.astro.illinois.edu/foswiki/bin/view/Main/RadioHaloMap

    Reduction in Unnecessary Clinical Laboratory Testing Through Utilization Management at a US Government Veterans Affairs Hospital

    Get PDF
    Objectives: To implement an electronic laboratory utilization management system (laboratory expert system [LES]) to provide safe and effective reductions in unnecessary clinical laboratory testing. Methods: The LES is a set of frequency filter subroutines within the Veterans Affairs hospital and laboratory information system that was formulated by an interdisciplinary medical team.Results: Since implementing the LES, total test volume has decreased by a mean of 11.18% per year compared with our pre-LES test volume. This change was not attributable to fluctuations in outpatient visits or inpatient days of care. Laboratory cost savings were estimated at 151,184and151,184 and 163,751 for 2012 and 2013, respectively. A significant portion of these cost savings was attributable to reductions in high-volume, large panel testing. No adverse effects on patient care were reported, and mean length of stay for patients remained unchanged. Conclusions: Electronic laboratory utilization systems can effectively reduce unnecessary laboratory testing without compromising patient care

    Maximum likelihood analysis of systematic errors in interferometric observations of the cosmic microwave background

    Get PDF
    We investigate the impact of instrumental systematic errors in interferometric measurements of the cosmic microwave background (CMB) temperature and polarization power spectra. We simulate interferometric CMB observations to generate mock visibilities and estimate power spectra using the statistically optimal maximum likelihood technique. We define a quadratic error measure to determine allowable levels of systematic error that do not induce power spectrum errors beyond a given tolerance. As an example, in this study we focus on differential pointing errors. The effects of other systematics can be simulated by this pipeline in a straightforward manner. We find that, in order to accurately recover the underlying B-modes for r=0.01 at 28<l<384, Gaussian-distributed pointing errors must be controlled to 0.7^\circ rms for an interferometer with an antenna configuration similar to QUBIC, in agreement with analytical estimates. Only the statistical uncertainty for 28<l<88 would be changed at ~10% level. With the same instrumental configuration, we find the pointing errors would slightly bias the 2-\sigma upper limit of the tensor-to-scalar ratio r by ~10%. We also show that the impact of pointing errors on the TB and EB measurements is negligibly small.Comment: 10 pages, 4 figures, accepted for publication in ApJS. Includes improvements in clarity of presentation and Fig.4 added, in response to refere

    Perturbative calculation of the scaled factorial moments in second-order quark-hadron phase transition within the Ginzburg-Landau description

    Get PDF
    The scaled factorial moments FqF_q are studied for a second-order quark-hadron phase transition within the Ginzburg-Landau description. The role played by the ground state of the system under low temperature is emphasized. After a local shift of the order parameter the fluctuations are around the ground state, and a perturbative calculation for FqF_q can be carried out. Power scaling between FqF_q's is shown, and a universal scaling exponent ν1.75\nu\simeq 1.75 is given for the case with weak correlations and weak self-interactions.Comment: 12 pages in RevTeX, 12 eps figure
    corecore