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ABSTRACT

We investigate the impact of instrumental systematic errors in interferometric measurements of the cosmic
microwave background (CMB) temperature and polarization power spectra. We simulate interferometric CMB
observations to generate mock visibilities and estimate power spectra using the statistically optimal maximum
likelihood technique. We define a quadratic error measure to determine allowable levels of systematic error that
does not induce power spectrum errors beyond a given tolerance. As an example, in this study we focus on
differential pointing errors. The effects of other systematics can be simulated by this pipeline in a straightforward
manner. We find that, in order to accurately recover the underlying B-modes for r = 0.01 at 28 < � < 384,
Gaussian-distributed pointing errors must be controlled to 0.◦7 root mean square for an interferometer with an
antenna configuration similar to QUBIC, in agreement with analytical estimates. Only the statistical uncertainty for
28 < � < 88 would be changed at ∼10% level. With the same instrumental configuration, we find that the pointing
errors would slightly bias the 2σ upper limit of the tensor-to-scalar ratio r by ∼10%. We also show that the impact
of pointing errors on the T B and EB measurements is negligibly small.

Key words: cosmic background radiation – cosmology: observations – instrumentation:
interferometers – methods: data analysis – methods: statistical

Online-only material: color figures

1. INTRODUCTION

Cosmic microwave background (CMB) polarization mea-
surements can significantly improve the estimation of cosmolog-
ical parameters, breaking the degeneracies between parameters
measured using CMB temperature anisotropy data alone. In the
standard theory of the CMB, the polarization field can be decom-
posed uniquely into an electric-type E-mode and a magnetic-
type B-mode (Zaldarriaga & Seljak 1997; Kamionkowski et al.
1997a). The E-mode polarization can provide useful informa-
tion about reionization of the universe (Hu & Holder 2003).
The primordial B-modes can probe horizon-scale primordial
gravitational waves and play a major role in understanding the
inflationary epoch (Hu & Dodelson 2002), while the secondary
lensing-induced B-mode signals (Zaldarriaga & Seljak 1998)
promise to provide a wealth of information about the distribu-
tion of matter and the evolution of large-scale structure. Mea-
suring the CMB polarization has become one of the major goals
of CMB experiments. However, the polarized CMB signal is so
small that its measurement requires not only very high instru-
mental sensitivity, but also exquisite control of systematics.

In many traditional imaging experiments, the determination
of the Stokes parameters Q and U is based on subtracting inten-
sities measured by two different detectors. Such an experiment
is very sensitive to systematic errors (Hu et al. 2003). For in-
stance, beam imperfections or beam mismatch will cause leak-
age from total intensity I into polarization signals Q and U. A
recent study (Miller et al. 2008) shows that in order to achieve a

reliable B-mode detection (r = 0.01), allowable levels of beam
systematics should not exceed 1% in ellipticity, the sub-percent
level in differential beam width and the few to subarcsecond
level in differential pointing. Also, with a finite patch of sky
observed by single-dish instruments, it is impossible to per-
fectly separate the very weak B-modes from the much stronger
E-modes (Lewis et al. 2002; Bunn 2002a, 2002b, 2011; Bunn
et al. 2003). Therefore, polarization detection presents a great
challenge in imaging experiments.

Alternatively, interferometers are a more natural choice for
measuring the anisotropies of the CMB temperature and polar-
ization. The correlation of the electric fields from two antennas,
called a visibility, measures the Fourier transform of the sky
intensity fluctuations modulated by the response of the anten-
nas. In most cases the region of sky covered by the antennas
is small enough that one can use the “flat-sky” approximation.
The expansion of the intensity field into spherical harmonics
thus can be approximated by Fourier modes—the visibility di-
rectly relates to the CMB power spectrum. The main reason
for building interferometers instead of traditional imaging ex-
periments is that systematic effects are well controlled in some
cases, especially for B-mode detection (Bunn 2007). Since in-
terferometers measure the Stokes parameters directly—without
differencing the signals between separate detectors for mea-
suring polarizations—mismatched beam shapes and pointing
errors do not cause leakage from I into Q and U. In addition,
in contrast to imaging experiments, interferometers can sep-
arate the E- and B-modes more cleanly because they sample
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the sky in the Fourier domain (Park et al. 2003; Park & Ng
2004).

Interferometers have been used to measure the CMB
anisotropies since the 1980s. The first attempt at measuring
the CMB with an interferometer was carried out by Martin
et al. (1980). Shortly after that, the 27 antenna Very Large
Array was used to searche for CMB fluctuations (Fomalont
et al. 1984; Knoke et al. 1984; Partridge et al. 1988) and the
first dedicated interferometer with two-element correlation re-
ceiver to CMB research was made by Timbie & Wilkinson
(1988). So far a number of interferometers have been con-
structed to observe the CMB power spectrum. The Cambridge
Anisotropy Telescope (CAT) was the first interferometer to ac-
tually detect structures in the CMB (O’Sullivan et al. 1995; Scott
et al. 1996; Baker et al. 1999) and the Degree Angular Scale
Interferometer (DASI) (Kovac et al. 2002) first detected the faint
polarized signals in the CMB. The Cosmic Background Imager
(CBI) (Pearson et al. 2003) and the Very Small Array (VSA;
Dickinson et al. 2004; Grainge et al. 2003) made high-sensitivity
observations of the CMB temperature and polarization angular
power spectra down to sub-degree scales.

There are many papers in the literature on the study of how
instrumental systematic errors affect CMB angular power spec-
trum measurements. For imaging measurements, a pioneering
study of such effects was performed by Hu et al. (2003). In addi-
tion, contamination of the CMB power spectrum by systematic
effects has been precisely assessed (Su et al. 2011; Miller et al.
2008; O’Dea et al. 2007; Shimon et al. 2008; Yadav et al. 2010).
An analytic approach for characterizing a variety of systematic
errors for interferometers has been performed by Bunn (2007).
This approach diagnoses systematic errors in a qualitative way.
Actual experiments will naturally require a realistic simulation
to quantitatively study such effects as carefully as possible. In
this paper, we present for the first time a simulation pipeline to
accurately assess the impact of interferometric systematics on
CMB power spectrum measurements. Such systematic errors
are evaluated from a full maximum likelihood (ML) analysis of
realistic simulated data. The method presented in this paper is
able to characterize a wide variety of systematic errors, such as
beam shape errors, gain errors, and cross-polarization, etc. As
an example, we examine a specific configuration of an interfer-
ometer to quantify systematic pointing errors on the recovery of
the CMB power spectrum.

The remainder of this paper is organized as follows. In
Section 2, we briefly summarize the simulation of CMB in-
terferometric observations. In Section 3, we describe the ML
method for extracting the CMB temperature and polarization
power spectra from interferometric data. In Section 4, we focus
on pointing errors. Using a comparison of the recovered CMB
power spectra with and without pointing errors, we assess the
degree of contamination of such systematics on CMB power
spectrum recovery. Finally, a discussion and summary are given
in Section 5.

2. SIMULATIONS

2.1. Visibilities and Covariance Matrix

Following the previous papers (Bunn 2007; Hobson &
Maisinger 2002; Hobson & Magueijo 1996; Myers et al. 2003,
2006; Park et al. 2003; White et al. 1999), here we briefly re-
view CMB interferometric observations. Suppose that we have
a set of antennas at position rn, n = 1, . . . , and each antenna
measures two polarization states (linear polarizations or circular

polarizations). The signal received, εout, by the nth antenna in
response to incoming radiation fields, εin, at frequency ν from
direction k̂ is then

εout(rn) =
∫

d2k̂ G(k̂) · εin(k̂)ei(k·rn−2πνt) . (1)

Here G is the 2 × 2 matrix-valued antenna pattern which
encodes the antennas’ response to the sky. εin and εout are
two-dimensional complex vectors representing an incoming
polarized electric field and an electric field that is output
by the antenna, respectively. The two-component vectors εin
and εout can be expressed in either a linear polarization basis
(X-Y) or a circular polarization basis (R-L). These two bases
are connected by a unitary transformation.

The time-averaged value of the correlation between polar-
ization component m from antenna j and polarization com-
ponent n from antenna k is referred to as a visibility: i.e.,
V

jk
mn = 〈εj

out,mεk
out,n〉. In the flat-sky approximation, for both

the linear and circular polarization bases, the visibilities with a
2 × 2 matrix form are related to the Stokes parameter matrix as
follows:

V jk =
∫

d2x Gj (x) · S(x) · G†k(x)e−2πiujk ·x , (2)

where the baseline vector ujk measures the separation between
the two antennas in units of wavelength (rj − rk)/λ. The Stokes
matrix, S, is related to the Stokes parameters I,Q,U, and V for
linear and circular polarization bases:

Slin =
(

I + Q U + iV
U − iV I − Q

)
, (3)

Scirc =
(

I + V Q + iU
Q − iU I − V

)
. (4)

Usually two main descriptors for systematics are used (Bunn
2007): the instrumental Jones matrix, J, and the antenna pattern,
G(x). J describes systematics that are purely introduced within
the instrument, such as gain errors and cross-talk between the
two outputs of a given antenna. Instrumental errors are easier
to model since they do not depend on the position on the
sky, while G(x) characterizes systematics occurring from the
observation of the sky before instrumental errors are taken
into account. We thus use G(x) to model beam shape errors,
pointing errors, and cross-polarizations, etc. This separation is
a bit arbitrary in that instrumental errors could be absorbed
into antenna patterns, but they are a convenient conceptual
distinction between systematics happening “before” and “after”
the antenna averages over the beam. The total effect on the
visibilities can be found from the relations

V jk =
∫

d2x Jj (Gj (x) · S(x) · G†k(x))J†ke−2πiujk ·x . (5)

For the jth antenna with gain errors g
j

1 , g
j

2 and cross-talk
couplings ε

j

1 , ε
j

2 , the Jones matrix reads

Jj =
(

1 + g
j

1 ε
j

1

ε
j

2 1 + g
j

2

)
. (6)

Similar to the Jones matrix, an azimuthally symmetric an-
tenna pattern has the form of

Gj (r, φ) =
(

G
j

0 + 1
2G

j

1 cos(2φ) 1
2G

j

1 sin(2φ)
1
2G

j

1 sin(2φ) G
j

0 − 1
2G

j

1 cos(2φ)

)
, (7)
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where (r, φ) are polar coordinates, G0 is the ideal beam shape,
and G1 leads to two polarization states mixing. The scalar
functions G0, G1 depend only on r. For an ideal interferometer,
each antenna has an identical response to both polarization
states while there is no mixing between them. In this case,
G is equal to a scalar function multiplied by the identity matrix,
i.e., G(x) = G(x)1.

For both linear and circular polarization experiments, cou-
pling errors (ε) are the major sources of systematics affecting
the B-mode power spectrum due to leakage from I into Q and
U, while less worrisome gain errors would mix VQ and VU with
each other. Furthermore, as shown by Bunn (2007), the visibility
for Stokes V could provide a useful diagnostic to monitor the
presence of these systematics.

For simplicity, we assume that instrument errors in the Jones
matrix are negligible (taking J = 1) and each antenna has
identical beam patterns for both polarization states and has no
cross-polar response (i.e., off-diagonal entries in G). Then, each
visibility measures a simple linear combination of the Stokes
parameters. We can extract Stokes visibilities from Equation (2),
yielding

V
jk

Z =
∫

d2x Z(x)Gj (x)G∗k(x)e−2πiujk ·x , (8)

for Z = {I,Q,U, V }. Since the visibility function is the Fourier
transform of the Stokes fields on the sky weighted by the antenna
response, by using the well-known convolution theorem, we can
write the visibility function in Fourier space (uv-domain):

V
jk

Z (u) =
∫

d2w Z̃(u − w)G̃jk(w) , (9)

where Z̃(u) and G̃jk(u) are the Fourier transforms of Z(x) and
Gj (x)G∗k(x), respectively. Note that each antenna pattern could
differ from the others because of systematic beam errors.

In this study, we only focus on differential pointing errors.
The pipeline presented in this paper can be applied in a
straightforward manner to other systematics. Pointing errors
occur when not all the antennas point in the same direction.
Following Bunn (2007), we model the pointing error as a
Gaussian-distributed error with dispersion δ. Assuming that the
jth antenna has the pointing offset δxj relative to a desired
direction, then according to Equation (8) each visibility can be
expressed in the form

V
jk

Z =
∫

d2x Z(x)Gj (x + δxj )G∗k(x + δxk)

× e−2πiujk ·x , (10)

where Z = {I,Q,U} and the beam response G(x) can
be approximated by a circular Gaussian of a frequency-
dependent dispersion σ , i.e., G(x) = exp(−|x|2/2σ 2(ν)). The
corresponding Fourier transform is thus given by G̃(u) =
2πσ 2(ν) exp(−2π2|u|2σ 2(ν)). It is worth noting that the dif-
ferential pointing in this paper specifically refers to pointing
offsets in some antennas relative to a desired direction. Our
definition naturally includes the relative displacement of the
beam centroids of two antennas and the average position of
the beam centroids, which are usually respectively referred to
as “differential pointing” and “common pointing” in imaging
experiments.

Additionally, for azimuthally asymmetric antennas, the point-
ing offsets for the two polarization states could be different.

Such “non-identical” pointing errors are much more worrisome
in imaging experiments since the differential pointing effects
couple T to Q and U and so produce a large bias on the B-modes
(Miller et al. 2008). For interferometers, they are expected to
produce contamination at a smaller level comparable to that
from identical pointing errors since the biases induced by the
offsets in these two situations arise from leakage of E into B.
For simplification, in this study we assume that the pointing
offsets δx are identical for the two polarization states in an ar-
bitrary antenna but can be different for two different antennas.
We will perform a detailed simulation in a forthcoming paper to
quantitatively assess effect of non-identical pointing errors for
interferometers.

In order to recover the power spectrum based on simulated
visibility data, one needs to construct the covariance matrix,
which is the fundamental tool for analysis of Gaussian random
CMB fields. In principle, all kinds of systematic errors in
visibilities can be simulated through Equation (5), whereas the
theoretically predicted covariance matrix does not include any
systematic uncertainties. Taking the error-free beam pattern, G,
with identical response between antennas, Equations (8) and (9)
can be simplified as follows:

VZ(u) =
∫

d2x Z(x)A(x)e−2πiu·x (11)

VZ(u) =
∫

d2w Z̃(u − w)Ã(w) . (12)

Here the intensity beam pattern, A(x), is defined by |G(x)|2 and
Ã is its Fourier transform.

In the flat-sky approximation, the Stokes parameters Q and
U can be decomposed into the E- and B-modes in Fourier space
(Zaldarriaga & Seljak 1997). Using Equation (12), the Stokes
visibilities VI , VQ, and VU then can be expressed in terms of T-,
E-, and B-modes as follows:

VQ(u) =
∫

d2w [Ẽ(w) cos(2φw) − B̃(w) sin(2φw)]Ã(u − w)

VU (u) =
∫

d2w [Ẽ(w) sin(2φw) + B̃(w) cos(2φw)]Ã(u − w)

VI (u) =
∫

d2w T̃ (w)Ã(u − w) , (13)

where T̃ , Ẽ, and B̃ stand for the CMB temperature field, T, and
polarization fields, E and B, in Fourier space and φw is the angle
made by the vector w with respect to the x-axis. In this study
we assume the Stokes visibility VV to be zero.

Given a set of visibility measurements, one can use ML
analysis to evaluate the CMB power spectra of the temper-
ature and polarization. By defining a vector of data V ≡
(V 1

I , V 1
Q, V 1

U ; . . . ;V n
I , V n

Q, V n
U ) at each baseline vector ui with

i = 1, . . . , n, the corresponding covariance matrices of the
CMB visibilities are

C
ij

ZZ′ ≡ 〈
VZ(ui)V

∗
Z′(uj )

〉
=

∫
d2w

∫
d2w′〈Z̃(w)Z̃′∗(w′)〉

× Ã(ui − w)Ã∗(uj − w′)

=
∫

d2w Szz′ (|w|)Ã(ui − w)Ã∗(uj − w) , (14)
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Table 1
Dependence of Ensemble-averaged Stokes Parameter Correlations on the CMB Angular Power Spectra

ZZ′ 〈Z̃(w)Z̃′∗(w′)〉 = Szz′ (|w|)δ(w − w′)

II SII = ST T (w)
IQ SIQ = ST E (w) cos 2φw − ST B sin 2φw

IU SIU = ST E (w) sin 2φw + ST B cos 2φw

QQ SQQ = SEE (w) cos2 2φw + SBB (w) sin2 2φw − SEB (w) sin 4φw

QU SQU = (SEE (w) − SBB (w)) sin 2φw cos 2φw + SEB (cos2 2φw − sin2 2φw)
UU SUU = SEE(w) sin2 2φw + SBB (w) cos2 2φw + 2SEB (w) sin 2φw cos 2φw

where i, j denote visibility data indices, and the dependence
of the correlation functions Szz′ on the CMB power spectra
are listed in Table 1. In the flat-sky approximation, the two-
dimensional power spectrum 4π2|u|2S(|u|) 
 �(� + 1)C�|�=2πu
for � � 10 (White et al. 1999).

2.2. Simulated Observations

The CMB Stokes fields are believed to be isotropic and
Gaussian in the standard inflationary models (Guth 1981;
Kamionkowski et al. 1997a, 1997b; Zaldarriaga & Seljak
1997). On a small patch of the sky, the corresponding Fourier
components of these fields are complex random variables and the
values of the real and imaginary parts of each point u in Fourier
space are drawn independently from a normal distribution
with zero mean and variance ∝ C�|�=2π |u|. With cosmological
parameters derived from the Wilkinson Microwave Anisotropy
Probe 7 yr results (Larson et al. 2011; Komatsu et al. 2011),
we use the public code CAMB (Lewis et al. 2000) to compute
the CMB power spectra CT T

� , CEE
� , CT E

� , CBB
� . The input B-

mode contains a primordial component with a tensor-to-scalar
perturbation ratio, r, and a secondary component induced by
lensing. In our simulation we fix r = 0.01, the goal for many
current observations.

Based on these power spectra, we generate Fourier modes and
then perform the inverse Fourier transform to obtain real-space
Stokes fields I (x),Q(x), and U (x). From Equation (5), for a
given Jones matrix and beam response G, the Stokes visibilities
are then obtained by performing the Fourier transform again.

We assume that the instrumental noise at each point of the
uv-plane is a complex, Gaussian-distributed number which is
independent between different baselines (White et al. 1999;
Morales & Wyithe 2010). For an instrument that measures both
polarizations with an identical uncertainty in Stokes parameters,
we can separately generate the Gaussian noise with identical
root-mean-square (rms) levels for each I, Q, and U visibility.
The correlation function of the noise for baselines i and j is
determined by

C
ij

N =
(

λ2Tsys

ηAAD

)2 (
1

Δν tanb

)
δij , (15)

where Tsys stands for the system noise temperature, λ for the
observing wavelength, AD for the physical area of an antenna,
ηA for the aperture efficiency, Δν for bandwidth, nb for the
number of baselines with the same baseline vector u, and ta for
the integration time of the baseline.

In order to illustrate the effect of systematic errors on the
recovered CMB power spectra and set allowable tolerance
levels for those errors, we perform simulations for a specific
interferometer design. We choose an antenna configuration
similar to that of the QUBIC instrument (Battistelli et al. 2011)
which is under construction for observations at 150 GHz. In

our simulation, the interferometer is a two-dimensional square
close-packed array of 400 horn antennas with Gaussian beams
of width 5◦ in the intensity beam pattern A(x), corresponding to
∼7.◦1 in G(x). The antennas have uniform physical separations
of 7.89λ. With this configuration, the resolution in the uv-plane
is about σu = 1.82 (Δ� 
 11), and the uv-coverage reaches
down to � � 50 − 2Δ� = 28, probing the primordial B-mode
bump at � ≈ 50.

We also assume that all Stokes visibilities, I, Q, and U,
can be measured simultaneously for each antenna pair with
an associated rms noise level of 0.015 μK per visibility, roughly
corresponding to low-noise detectors each with 150 μKs1/2

and a total integration time of 3 yr. With this noise level, the
simulations show that the averaged overall signal-to-noise ratio
(S/N) in Stokes Q and U maps is about 5. The high S/N ensures
an accurate recovery of the B-mode power spectrum and allows
us to see systematic effects clearly.

We generate realizations of Stokes parameter maps having a
physical size of 30◦ on a side and a resolution of 64 × 64 pixels.
This large patch size ensures that the intensity beam pattern
|G|2 at the edges decreases to ∼1% level of its peak value.
Although this size of patch seems to severely violate the flat-
sky approximation, the primary beam pattern itself is small
enough (the field-of-view Ω is about 0.047 sr) so that the flat-
sky approximation is still valid. For simplicity, we assume that
all the antennas continuously observe the same sky patch at a
celestial pole and the interferometer is located at the north or
south pole, and the uv-tracks should be perfectly circular for
a 12 hr observation. Figure 1 shows the mock systematics-free
visibility data from these observations.

3. MAXIMUM LIKELIHOOD ANALYSIS

The ML estimator of the power spectrum has many desirable
properties (Bond et al. 1998; Kendall et al. 1987). The idea is to
choose a model for the data and construct a likelihood estimator
to evaluate how well the model matches the data. For a given
model, comparing to the actual data set will give a likelihood of
the model parameters. In practice, it is easier to maximize the
logarithm of the likelihood function than the likelihood function
itself.

Since CMB Stokes visibilities are complex Gaussian random
variables with zero mean and dispersion CV +CN , the logarithm
of the likelihood function is given by

lnL(C�) = n log π − log |CV +CN |−V†(CV +CN )−1V , (16)

where V is the visibility data vector, CV is the signal covariance
matrix predicted by 〈V†V〉, which can be constructed through
Equation (14), and CN is the noise covariance matrix, which can
be computed by Equation (15).

In practice, we parameterize the CMB power spectrum C�

as flat band powers over some multipole range to evaluate the

4
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(a) I(x) (b) Q(x) (c) U (x)

(d) VI (u) (e) VQ (u) (f) VU (u)

Figure 1. Simulated interferometric observations. The images shown in panels (a), (b), and (c) are a 30◦ × 30◦ realization of the two-dimensional CMB Stokes fields
I, Q, and U based on the standard CMB power spectra with a 64 × 64 pixel grid. All Fourier modes higher than the Nyquist frequency are filtered out to avoid aliasing.
The images shown in the remaining panels are simulated Stokes visibilities (shown as magnitudes) by a QUBIC-like observation, assuming a Gaussian primary beam
A(x) with beam width σ = 5◦, a simulated 12 hr uv-coverage of single field with 400 close-packed antennas, and Gaussian random noise of 0.015 μK per visibility.
The map units are equivalent thermodynamic temperature in μK.

(A color version of this figure is available in the online journal.)

likelihood function (Bunn & White 1996; Bond et al. 1998;
Gorski et al. 1996; White et al. 1999). We divide the power
spectrum �(� + 1)C� into Nb piecewise-constant bins. Each bin
corresponds to separate annuli in the uv-plane, characterizing
the averaged C� over its bin width. In our case, we evaluate
the likelihood function by varying the CMB band powers
{CT T

b , CEE
b , CBB

b , CT E
b , CT B

b , CEB
b } with b = 1, . . . , Nb. Here

Cb ≡ 2π |ub|2S(|ub|).
The bin width can be chosen arbitrarily, but an appropriate

choice of width is fine enough resolution to accurately detect
the structure of the power spectrum and also wide enough
to reduce the correlation between the band-power estimates
so that the statistical errors on different band-power bins are
approximately uncorrelated. The natural choice of bin width
can be approximated by the characteristic width of the Fourier
transformed intensity beam pattern A(x), which defines the
typical correlation length in the uv-plane. The minimum bin
width for the QUBIC-like experiment is about Δu ≈

√
Ω−1 =

4.1 wavelengths, corresponding to Δ� ≈ 26. As a consequence,
the total number of band-power bins is 6 × Nb ≈ 84. However,
the computational time required to evaluate the likelihood
function in such a large number of bins is unfeasible. Instead,
in this paper, we estimate the power spectrum by using the bin
width of Δ� 
 60, roughly having six band-power bins for each
power spectrum at the range of 28 < � < 384.

Using the above parameterization and following the previous
papers (Hobson & Maisinger 2002; Park et al. 2003; White et al.
1999), the covariance matrices defined in Equation (14) can be
written as

C
ij

ZZ′ =
Nb∑
b=1

∑
α,β

Cαβ

b

∫ |ub2|

|ub1|

1

2π

dw

w
× W

i,j

ZZ′αβ(w) , (17)

where we introduced the so-called window functions W
ij

ZZ′αβ

given by

W
ij

ZZ′αβ(|w|) =
∫ 2π

0
dφw ωZαωZ′βÃ(ui−w)Ã∗(uj −w) , (18)

where Z,Z′ = {I,Q,U} and α, β = {T ,E,B} with ωIT = 1,
ωUE = sin 2φw, ωUB = cos 2φw, ωQE = cos 2φw, and
ωQB = − sin 2φw and otherwise zero.

Here we should note that the window functions W
ij

ZZ′αβ(|w|)
are independent of the band-power spectra and therefore we
only need to pre-calculate the integrals of the window func-
tions over w in Equation (17) once for evaluating the covari-
ance matrices. Furthermore, if the primary beam pattern is
Gaussian, the window functions can be integrated out analyt-
ically. Following Hobson & Maisinger (2002), in Table 2 we
provide the formulas of integrals for computing the window
functions in Equation (18). This is all the formalism required
for constructing the covariance matrices.

Empirically, direct evaluation of the full log-likelihood func-
tion over high-dimensional parameter spaces is unachievable.
However, thanks to sophisticated and efficient numerical algo-
rithms, it becomes possible to find the parameter values that
maximize the log-likelihood function in relatively few steps, of
the order of N2

b . As mentioned by Hobson & Maisinger (2002)
and references therein, the most efficient numerical algorithm
for maximizing the likelihood function is the combination of
the sparse matrix conjugate-gradient algorithm and Powell’s
directional-set method. Due to the high sparsity of the covari-
ance matrix for interferometer data, sparse matrix algorithms
can dramatically reduce the computational time by a factor of
f 1.5

s compared to the standard dense matrix algorithm, where
fs is defined by the sparsity fraction of the covariance matrix.
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Table 2
Integrals Used in the Calculations of the Window Functions∫ 2π

0 dφw exp(4π2q · w) = 2πI0(a)∫ 2π

0 dφw exp(4π2q · w) cos 2φw = 2πI2(a) cos(2φq)∫ 2π

0 dφw exp(4π2q · w) sin 2φw = 2πI2(a) sin(2φq)∫ 2π

0 dφw exp(4π2q · w) cos2 2φw = π (aI0(a)((a2 + 24) cos(4φq) + a2) − 8(a2 + 6)I1(a) cos(4φq))
a3∫ 2π

0 dφw exp(4π2q · w) sin2 2φw = π (8(a2 + 6)I1(a) cos(4φq) + I0(a)(a3 − a(a2 + 24) cos(4φq)))
a3∫ 2π

0 dφw exp(4π2q · w) sin 2φw cos 2φw = π (a(a2 + 24)I0(a) − 8(a2 + 6)I1(a)) sin(4φq)
a3

Note. We introduce |q| = σ (ui + uj ), a = 4π2|q||w|, and Im(a) is the modified Bessel
function of the first kind and order m for a real argument a (see details in the text).

Using Powell’s direction-set method instead of the standard
Newton–Raphson method, which requires intensive computa-
tions on the gradient or curvature of the log-likelihood function,
the maximizing process requires only ∼3N2 function calls by
the line-minimization method. For a QUBIC-like observation of
a single field, with six spectral bins in each CMB power spec-
trum, the ML evaluations for a total of about 4000 visibilities in
the I,Q,U maps require about 20 hr of CPU time.

Assuming that the likelihood function near its peak â can
be well approximated by a Gaussian, the parameter confidence
intervals can be estimated by taking the inverse of the Hessian
matrix H(â), which is the matrix of second derivatives of the
log-likelihood function with respect to the parameters, i.e.,
∂2H/∂ai∂aj . The inverse of the Hessian matrix can be regarded
as the asymptotic covariance matrix of the parameter estimates.
The square roots of the diagonal elements of the asymptotic
covariance matrix are assumed to be asymptotic standard
errors of the parameter estimates, namely, 〈δa2

i 〉 = (H−1)ii .
Practically, we perform second differences numerically along
each parameter direction to directly obtain the Hessian matrix
and then calculate the statistical error estimates on the band-
power spectra. We find that this procedure requires only about
30 minutes of CPU time for ∼4000 visibilities.

Figure 2 shows the resulting ML CMB power spectra based on
the simulated observations in the absence of systematic errors.
The recovered power spectra are basically consistent with the
true underlying CMB power spectra within 2σ .

4. ANALYSIS OF POINTING ERRORS

Using the simulated Stokes visibilities and applying the ML
analysis described in the previous section, we obtained estimates
of the systematic pointing errors in the CMB power spectra.
Other systematics, such as beam shape errors, gain errors, and
cross-polarization, will be presented in a detailed analysis on
various instrumental systematics in a forthcoming paper.

The quadrature difference between the recovered power
spectrum with and without pointing errors is used to estimate
the effect of systematic pointing errors. Also the pointing errors
can potentially change the statistical error (which depends on
the curvature of the likelihood function) for a given experiment.
The bias in the ith band-power spectrum Ci and the change in the
corresponding statistical error σi are given by

ΔCi = 〈(
Cerror

i − Ci

)2〉1/2

Δσi = 〈(
σ error

i − σi

)2〉1/2
, (19)

where Cerror
i refers to values obtained in the presence of pointing

errors and Ci is the recovered power spectrum for that same

patch of the sky in the absence of systematic errors (refers to
“ML” in Figure 2). To quantify how significant this systematic
error is when compared with the systematics-free 1σ statistical
error, following O’Dea et al. (2007) and Miller et al. (2008), we
introduce the tolerance parameters defined by

αi = ΔCi

σi

βi = Δσi

σi

, (20)

where ΔCi and Δσi are quadrature differences in Equation (19).
We set up a tolerance limit, say 10%, which requires that
neither α nor β exceed 0.1. In our simulations, we consider
two types of pointing errors: uncorrelated and fully correlated.
In the uncorrelated case, the pointing errors are assumed to be
Gaussian-distributed for each antenna (and tend to average out),
and in the fully correlated case, the pointing offsets Δx relative to
the desired observing direction are identical for all the antennas
and remain fixed on the sky as the sky rotates. Without pointing
errors, the desired observing direction is fixed to a celestial pole
where all the antennas continuously observe the same sky patch
as the sky rotates. Once the pointing errors are present in real
observations, the “actual” observing direction for each antenna
would change with time as the sky rotates since the direction
being observed in a realistic scenario is fixed with respect to
the Earth rather than to the sky. To exactly mimic the visibility
signal measured by each antenna pair would require observing
a patch that shifts with time as the sky rotates. Further, the
observed patches would be slightly different for each pair of
antennas. For simplicity, we assume that the pointing offsets
remain fixed on the sky instead of with respect to the Earth
as a good approximation if the pointing offsets are randomly
Gaussian-distributed in each antenna and are small enough
compared to the beam width. This approximation would be less
valid in the fully correlated case that corresponds to the entire
array of antennas simply looking at the same “wrong” patch of
sky, although it would be valid at any instant. We leave a more
detailed investigation on the pointing effects taking into account
the sky rotation to a future paper. Our preliminary results from
this more complete calculation show that the resulting biases in
the BB measurement are consistent within ∼30% in these two
scenarios for the rms pointing errors of 0.◦7.

As introduced by Bunn (2007), we use an error parameter
p in units of the beam width σ to characterize the pointing
error level, i.e., p = δ/σ and p = |Δx|/σ , respectively, for
the uncorrelated and fully correlated cases, where δ is the rms
value of Gaussian-distributed pointing errors and |Δx| is the
amplitude of identical pointing offsets. For clear comparison,
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(a) T T power spectrum (b) EE power spectrum (c) BB power spectrum

(d) T E power spectrum (e) T B power spectrum (f) EB power spectrum

Figure 2. CMB power spectra T T ,EE, BB, T E, T B, EB (red) recovered by maximizing the likelihood function from a mock QUBIC-like observation in the absence
of systematic errors (see details in the text). The flat band powers are estimated in six bins with bin widths Δu = 9.5 and with 1σ (red hatched) statistical uncertainties.
The input CMB power spectra are shown in black and the specific realizations of such input power spectra are shown in green.

(A color version of this figure is available in the online journal.)

(a) BB power spectrum (b) T B power spectrum (c) EB power spectrum
Figure 3. Assessment of systematic pointing error for BB, T B, and EB power spectra. In the units of systematics-free 1σ statistical uncertainties, the solid lines are
for the induced bias in the power spectra and the dotted for the changes in statistical uncertainties. The green triangles denote the results in the case of the independent
Gaussian-distributed pointing errors with the dispersion δ = 0.1σ for each antenna, which are estimated by averaging over 50 simulations. The corresponding analytical
result by Bunn (2007) is shown by the dashed black line. The blue points correspond to all the antennas having the identical pointing offsets with the amplitude
|Δx| = 0.1σ , and the results are obtained by averaging over 20 random directions relative to the target direction.

(A color version of this figure is available in the online journal.)
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Figure 3 shows the values of α and β in the BB, T B, and
EB power spectra with the identical p = 0.1 for both the
cases. As illustrated in Figure 3 for the uncorrelated case, the
parameter α in each band-power bin for the BB power spectrum
is smaller than 0.06 and smaller than 0.04 and 0.01 for the T B
and EB power spectra, respectively. Also, the parameter α for
the BB power spectrum increases approximately monotonically
with increasing �. Moreover, it is apparent that for the BB
power spectrum the values of the parameter β are always much
smaller than those of α over the whole multipole range, except
for the lowest band-power bin where β roughly approaches
our criterion of 10% threshold. However, for the T B and EB
power spectra, the values of β demonstrate that the changes in
statistical errors in all band-power bins are basically comparable
and they have less sensitivity than α. Using α and β, and taking
the tolerance limit of 10%, we put an upper limit on the allowed
range of the pointing error parameter p, requiring p � 0.1.

Here α and β are estimated by the mean of 50 simulations,
which in principle should be an accurate estimation of the true
systematic contamination. To check the convergence of our
results, we repeated another independent 50 realizations and
found the variations of both α and β to be less than 5%. In order
to clearly illustrate the systematic effects, for each simulation we
randomly generate Gaussian pointing offsets for all the antennas,
but the Stokes parameters, I (x), Q(x), and U (x), and the noise in
each visibility are fixed during the entire simulation. In fact, our
results are insensitive to different realizations of the sky maps
and noise and only depend on the amplitude of the pointing
error.

To verify our results, we compare them with the analytical
results by Bunn (2007). In our simulations, we assume that two
visibilities Q and U are measured with the same antenna (as is
the case of a circular experiment in Bunn 2007), and therefore
using the corresponding relation the bias on the B-mode power
spectrum is

(ΔC�)2 = p2

N

(
8(s2)2

(
CEE

�

)2
+ 6s2CEE

� CBB
�

)
, (21)

where s̄2 is the average of sin2 2φ over the antenna patterns
and the factor N is the number of baselines contributing to each
band-power bin since the systematic effects in random pointing
offsets will average down as

√
N . The value of s̄2 approximately

follows s̄2 = 262.7/�2 in a QUBIC-like experiment and our
simulation shows that the number of baselines in the first two
bins is about 2000 and about 5000 in the remaining bins. Due
to pointing errors mostly arising from mixing EE into BB,
we only consider the leading contribution from CEE

� and the
secondary one from CEE

� and CBB
� . Using the above parameters,

the corresponding results are shown in Figure 3(a), from which
we find that the simulation-based results are consistent within
a factor of four with the analytical-based results. The simulated
observations with likelihood-function analysis therefore provide
reliable estimates on pointing errors. Furthermore, numerical
simulations illustrate that the analytical-based results by Bunn
(2007) actually underestimate the biases at � � 150, since the
analytical calculation can only give a first-order approximation
and thus provide lower bounds on pointing errors, which can
yield poor estimates in cases of large pointing errors. Therefore,
the analytical-based results can be considered as an approximate
estimation of systematic effects. The resulting bias that the
simulations predict could be larger than those found by the
analytical calculations.

In the fully correlated case, the pointing directions of all
antennas are offset by the same amount, which means they
all look at a slightly different patch of the sky from the one
used to compute Ci in Equation (20). Recall that Ci is the
recovered band-power spectrum in the absence of systematic
errors. In this case, the systematic errors would be equivalent to
the cosmic variance and α 
 1 if instrumental noises were zero.
It is worth noting that the fully correlated case would have no
effect on the determination of cosmological parameters since
observing a different patch of the statistically isotropic CMB
sky would not affect the correct estimates of the underlying
CMB power spectra. The simulations confirm, as expected,
that the contamination levels in α and β in each band-power
bin are much larger than in the case of uncorrelated errors
by a factor of ∼10. In the fully correlated case, pointing
errors of 10% beam width can affect the BB and T B power
spectrum measurements at roughly the 50% level in the lowest
�-bin. Similar to the uncorrelated case, the parameter α is more
sensitive to the pointing errors than β. The fully correlated case,
however, is a worst-case scenario and unrealistic. The actual
pointing offsets should be very close to Gaussian distributions,
which implies that the realistic contamination induced by
pointing errors would resemble the uncorrelated pointing error
forecasts. We conclude that for a QUBIC-like observation, the
tolerance parameters α and β remain below our tolerance limit
of 10% for pointing uncertainties as large as p = 0.1 for all band
powers. For the EB and T B power spectra, pointing errors are
so small that we can entirely neglect such systematic effects in
all band powers.

Furthermore, since a QUBIC-like interferometer is designed
specifically to probe the primordial B-modes, we are mostly
concerned with levels of bias in r. Due to the presence of
sampling variance, instrumental noise, and systematic errors,
we cannot perfectly recover the almost zero BB in the lowest
�-bin—where the amplitude depends primarily on r rather than
on the lensing-induced signal if r > 0.01—but can set an up-
per limit on r. We thus run simulations on the maps with the
input CBB

� for r = 0 to generate visibilities that include the
effects of systematic pointing errors. Because the input BB
has r = 0, any “non-zero” BB signal in the lowest �-bin
would lead to an upper limit on r, which is assumed to be
a conservative estimate since the lensing-induced B-modes in
the lowest �-bin can be partially removed using the signals in
high-� bins. The amplitude of the false BB induced by pointing
errors that couple E to B can be characterized by the quadra-
ture difference ΔCi between the recovered band power with
and without pointing errors, as in Equation (19). By apply-
ing the ML approach to analyze the simulated signals from
r = 0 input BB, we find that, in the absence of systematic
errors, the amplitudes of the recovered BB band power in the
lowest �-bin (28 < � < 88) and its 1σ statistical error are
C 
 2.1 × 10−3 μK2 and σ 
 1.9 × 10−3 μK2, respectively,
as shown in Figure 4. Assuming that the theoretical primor-
dial BB band power without lensing contributions in the lowest
�-bin is 4.74 × 10−4(r/0.01) μK2, the amplitudes of the recov-
ered C and σ are consequently comparable to the inflationary
BB power for r = 0.045 and σr = 0.041, yielding an upper
limit of r < 0.045 + 2 × 0.041 = 0.127 at 95% confidence
for systematic-free observations. In the presence of the point-
ing errors, the false BB power in the uncorrelated case with
p = 0.1 has an amplitude of 3.6 × 10−5 μK2, which translates
into an uncertainty in r, i.e., Δr 
 7.6 × 10−4. Moreover, in
the fully correlated case, the pointing-error-induced false BB
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Figure 4. Overview of the effects of pointing errors on the B-mode power
spectrum. The input BB purely from gravitational lensing and not induced by
primordial fluctuations is shown in black. In the absence of systematic errors,
the recovered BB and the corresponding 1σ (red hatched) statistical uncertainty
are also shown for comparison. The amplitudes of the false B-modes ΔC induced
by pointing errors in the fully correlated and uncorrelated cases are estimated
by 50 realizations.

(A color version of this figure is available in the online journal.)

power is about 13 times larger than in the uncorrelated case,
resulting in Δr 
 0.01. In addition, the simulations show that
the changes in the statistical errors (as in Equation (19)) result
in Δσr 
 2.2 × 10−3 and 5.8 × 10−3 in the uncorrelated and
fully correlated cases, respectively. As a result, we can constrain
r < 0.147 and r < 0.132 (i.e., r < 0.127 + Δr + 2 × Δσr ) in the
fully correlated and uncorrelated cases with p = 0.1, respec-
tively. Based on the above analysis, we can therefore conclude
that, for a QUBIC-like observation of a single field, the pointing
errors would slightly bias the 2σ upper limit of r at ∼10% level,
which is much smaller than the statistical uncertainty caused by
sampling variance and instrument noise.

5. CONCLUSIONS

In this study, we developed a complete simulation pipeline
to assess systematic errors in measurements of the CMB by
interferometers. Although we only focus on pointing errors at
present, any other systematic errors, such as beam shape errors,
gain errors, and cross-polarization, can be evaluated in the same
way and we plan to study them in a forthcoming paper. The main
purpose of the present paper is to introduce the ML estimator
for interferometric CMB temperature and polarization data, and
to study its sensitivity to incorrect modeling assumptions and
systematic errors. We choose tolerance levels of 10% on α
and β in this study, which are somewhat arbitrary and may
be changed at will. For interferometers with large numbers of
redundant baselines, each independently measuring the Fourier
modes of the sky, the effects of random systematic errors will be
highly suppressed since errors will average down in visibilities
measured over many baselines.

For a QUBIC-like interferometer, we find that in most cases
the most stringent constraints on the allowable range of pointing
errors are obtained from the requirement on the bias in power
spectrum rather than from the changes in statistical errors. When
the Gaussian-distributed pointing errors are controlled with a
precision of δ ≈ 0.◦7, our simulation shows that the measured
B-modes in the multipole range 28 < � < 384 cannot be
contaminated at the 10% level in the statistical uncertainty (σ�)
units, but the change in the statistical error at 28 < � < 88
could exceed 10% of the statistical uncertainty. Our results are
consistent with the analytical estimations by Bunn (2007) within
a factor of four.

As we know, the choice of scan strategy plays an important
role in mitigating systematic effects. In imaging experiments,
one uses natural sky rotation and frequent boresight rotation in
order to achieve sufficient parallactic angle coverage and mini-
mize systematic contamination in the B-mode power. For point-
ing errors, a recent study (Shimon et al. 2008) shows that the
leading-order pointing effects would vanish for an ideal isotropic
scan where every pixel is uniformly scanned in multiple ran-
dom orientations. Unlike imaging experiments, interferometers
rotate about the boresight in order to increase the uv-coverage,
provide a clean way to modulate the polarization signals and
recover the Stokes parameters, and test for systematic effects
using redundant baselines (e.g., DASI; Kovac et al. 2002). Other
scan strategies such as continuous drift scans and mosaicking
are valuable for reducing the sampling variance and improving
the �-space resolution (White et al. 1999) while obtaining clean
and optimal E/B separation (Bunn & White 2007). However,
the pointing systematic effects for interferometers are insensi-
tive to scanning strategies but sensitive to the configuration of
the array elements for several reasons: (1) interferometers mea-
sure the power spectrum directly and the underlying power spec-
trum is assumed to be the same in different sky patches; (2) any
random systematic errors would be averaged out in visibilities
measured by a large number of redundant baselines that only
rely on the configuration of array elements; (3) the contami-
nation only comes from a leakage of E into B (not T into B);
(4) this leakage is independent of scanning strategies—i.e., the
errors do not strongly couple the visibilities at different angular
scales to each other and the width of the coupling region for
each Fourier mode is determined by the inverse of the beam
width but not the scan strategy. Even if pointing errors do not
have good statistical properties, the induced spurious polariza-
tion signals are still expected to be small if the total number of
redundant baselines is large enough. For example, assuming that
the total N (N − 1)/2 visibilities are measured by N antennas in
which M antennas have pointing errors of p = 0.4, according to
Equation (21), the resulting spurious BB power would be
∝ p(M/N) and ∝ p(

√
M/N) in the fully correlated and the

uncorrelated case, respectively. Thus, large pointing errors ap-
pearing only in a few antennas (e.g., M � 400 for QUBIC-like
experiments) cannot significantly bias the BB measurements.

To evaluate how pointing errors limit the constraint on r, based
on the simulated maps with input BB of r = 0, we compared the
recovered BB power spectra and the corresponding statistical
errors in the lowest �-bin with and without pointing errors. We
find that pointing errors with p = 0.1 in both the fully correlated
and uncorrelated cases would slightly bias the 2σ upper limit
on r at ∼10% level.

In principle the T B and EB power spectra are unique “smok-
ing gun” signals for new physics. For imaging experiments,
pointing errors have to be controlled to the subarcminute level
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to avoid spurious signals. However, our simulation clearly shows
that the impact of the pointing errors on T B and EB estimates
is negligibly small compared with their statistical uncertainties.
Therefore, systematic pointing errors in interferometers will not
severely degrade B-mode science.
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