308 research outputs found

    Toward a q-Deformed Standard Model

    Get PDF
    A gauge theory with an underlying SU_q(2) quantum group symmetry is introduced, and its properties examined. With suitable assumptions, this model is found to have many similarities with the usual SU(2)\times U(1) Standard Model, specifically, the existence of four generators and thus four gauge fields. However, the two classical symmetries are unified into one quantum symmetry, and therefore there is only a single coupling constant, rather than two. By incorporating a Higgs sector into the model, one obtains several explicit tree-level predictions in the undeformed limit, such as the Weinberg angle: sin2ΘW=3/11sin^2\Theta_{W} = 3/11. With the Z-boson mass m_Z and fine structure constant alpha as inputs, one can also obtain predictions for the weak coupling constant, the mass of the W, and the Higgs VEV. The breaking of the quantum invariance also results in a remaining undeformed U(1) gauge symmetry.Comment: Version to appear in J. Geom. Phys. -reorganized and shortened, with minor stylistic change

    Surface topography of hydroxyapatite affects ROS17/2.8 cells response

    Get PDF
    Hydroxyapatite (HA) has been used in orthopedic, dental, and maxillofacial surgery as a bone substitute. The aim of this investigation was to study the effect of surface topography produced by the presence of microporosity on cell response, evaluating: cell attachment, cell morphology, cell proliferation, total protein content, and alkaline phosphatase (ALP) activity. HA discs with different percentages of microporosity (< 5%, 15%, and 30%) were confected by means of the combination of uniaxial powder pressing and different sintering conditions. ROS17/2.8 cells were cultured on HA discs. For the evaluation of attachment, cells were cultured for two hours. Cell morphology was evaluated after seven days. After seven and fourteen days, cell proliferation, total protein content, and ALP activity were measured. Data were compared by means of ANOVA and Duncan’s multiple range test, when appropriate. Cell attachment (p = 0.11) and total protein content (p = 0.31) were not affected by surface topography. Proliferation after 7 and 14 days (p = 0.0007 and p = 0.003, respectively), and ALP activity (p = 0.0007) were both significantly decreased by the most irregular surface (HA30). These results suggest that initial cell events were not affected by surface topography, while surfaces with more regular topography, as those present in HA with 15% or less of microporosity, favored intermediary and final events such as cell proliferation and ALP activity

    Neuromorphic object localization using resistive memories and ultrasonic transducers

    Full text link
    Real-world sensory-processing applications require compact, low-latency, and low-power computing systems. Enabled by their in-memory event-driven computing abilities, hybrid memristive-Complementary Metal-Oxide Semiconductor neuromorphic architectures provide an ideal hardware substrate for such tasks. To demonstrate the full potential of such systems, we propose and experimentally demonstrate an end-to-end sensory processing solution for a real-world object localization application. Drawing inspiration from the barn owl’s neuroanatomy, we developed a bio-inspired, event-driven object localization system that couples state-of-the-art piezoelectric micromachined ultrasound transducer sensors to a neuromorphic resistive memories-based computational map. We present measurement results from the fabricated system comprising resistive memories-based coincidence detectors, delay line circuits, and a full-custom ultrasound sensor. We use these experimental results to calibrate our system-level simulations. These simulations are then used to estimate the angular resolution and energy efficiency of the object localization model. The results reveal the potential of our approach, evaluated in orders of magnitude greater energy efficiency than a microcontroller performing the same task

    Solar Model Uncertainties, MSW Analysis, and Future Solar Neutrino Experiments

    Full text link
    Various theoretical uncertainties in the standard solar model and in the Mikheyev-Smirnov-Wolfenstein (MSW) analysis are discussed. It is shown that two methods of estimating the solar neutrino flux uncertainties are equivalent: (a) a simple parametrization of the uncertainties using the core temperature and the nuclear production cross sections; (b) the Monte Carlo method of Bahcall and Ulrich. In the MSW analysis, we emphasize proper treatments of correlation of theoretical uncertainties between flux components and between different detectors, the Earth effect, and multiple solutions in a combined χ2\chi^2 procedure. The MSW solutions for various standard and nonstandard solar models are also shown. The MSW predictions of the global solutions for the future solar neutrino experiments are given, emphasizing the measurement of the energy spectrum and the day-night effect in Sudbury Neutrino Observatory and Super-Kamiokande to distinguish the two solutions.Comment: (Revtex 3.0, 43 pages + 26 figures (uuencoded ps files attached), Easy way: ps files of entire text with embedded figures available by anonymous ftp://upenn5.hep.upenn.edu/pub/hata/papers/msw_analysis.u

    Gauge symmetry and W-algebra in higher derivative systems

    Full text link
    The problem of gauge symmetry in higher derivative Lagrangian systems is discussed from a Hamiltonian point of view. The number of independent gauge parameters is shown to be in general {\it{less}} than the number of independent primary first class constraints, thereby distinguishing it from conventional first order systems. Different models have been considered as illustrative examples. In particular we show a direct connection between the gauge symmetry and the W-algebra for the rigid relativistic particle.Comment: 1+22 pages, 1 figure, LaTeX, v2; title changed, considerably expanded version with new results, to appear in JHE

    Model Independent Determination of the Solar Neutrino Spectrum with and without MSW

    Get PDF
    Besides the opportunity for discovering new neutrino physics, solar neutrino measurements provide a sensitive probe of the solar interior, and thus a rigorous test of solar model predictions. We present model independent determinations of the neutrino spectrum by using relevant flux components as free parameters subject only to the luminosity constraint. (1) Without the Mikheyev-Smirnov-Wolfenstein (MSW) effect, the best fit for the combined data is poor. Furthermore, the data indicate a severe suppression of the 7^7Be flux relative to the 8^8B, contradicting both standard and nonstandard solar models in general; the pppp flux takes its maximum value allowed by the luminosity constraint. This pathology consistently appears even if we ignore any one of the three data. (2) In the presence of the two-flavor MSW effect, the current constraint on the initial 8^8B flux is weak, but consistent with the SSM and sufficient to exclude nonstandard models with small 8^8B fluxes. No meaningful constraint is obtained for the other fluxes. In the future, even allowing MSW, the 8^8B and 7^7Be fluxes can be determined at the ±\pm(15 -- 20)\% level, making competing solar models distinguishable. We emphasize that the neutral current sensitivity for 7^7Be neutrinos in BOREXINO, HELLAZ, and HERON is essential for determining the initial fluxes. The constraints on the MSW parameters in the model independent analysis are also discussed.Comment: Revtex 3.0, 61 pages including 23 figures, uuencoded ps file attached. Easy way: compressed ps file of entire paper in landscape format available by anonymous ftp://upenn5.hep.upenn.edu/pub/hata/papers/model_ind.ps.

    Solutions to Solar Neutrino Anomaly

    Full text link
    We present an updated analysis of astrophysical solutions, two-flavor MSW solutions, and vacuum oscillation solutions to the solar neutrino anomaly. The recent results of each of the five solar neutrino experiments are incorporated, including both the zenith angle (day-night) and spectral information from the Kamiokande experiment, and the preliminary Super-Kamiokande results. New theoretical developments include the use of the most recent Bahcall-Pinsonneault flux predictions (and uncertainties) and density and production profiles, the radiative corrections to the neutrino-electron scattering cross section, and new constraints on the Ga absorption cross section inferred from the gallium source experiments. From a model independent analysis, arbitrary astrophysical solutions are excluded at more that 98% C.L. even if one ignores any one of the three classes of experiment, relaxes the luminosity constraint, or allows more suppression of the 7Be than 8B flux. The data is well described by large and small mixing angle two-flavor MSW conversions, MSW conversions into a sterile neutrino with small mixing, or vacuum oscillations. We also present MSW fits for nonstandard solar models parameterized by an arbitrary solar core temperature or arbitrary 8B flux.Comment: 36p including 21 postscript figures, uses REVTEX 3.1 and epsf.sty, entire ps file and html file with embedded figures available at http://www.sns.ias.edu/~hata/papers/anomaly

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore