189 research outputs found

    Airborne lidar measurements of El Chichon stratospheric aerosols, January 1984

    Get PDF
    A lidar-equipped NASA Electra aircraft was flown in January 1984 between the latitude of 38 and 90 deg N. One of the primary purposes of this mission was to determine the spatial distribution and aerosol characteristics of El Chichon produced stratospheric material. Lidar data from that portion of the flight mission between 38 deg N and 77 deg N is presented. Representative profiles of lidar backscatter ratio, a plot of the integral backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are applied for each profile. These data clearly show that material produced by the El Chichon eruptions of late March-early April 1982 had spread throughout the latitudes covered by this mission, and that the most massive portion of the material resided north of 55 deg N and was concentrated below 17 km in a layer that peaked at 13 to 15 km. In this latitude region, peak backscatter ratios at a wavelength of 0.6943 microns were approximately 3 and the peak integrated backscattering function was about 15 X 10 to the -4/sr corresponding to a peak optical depth of approximately 0.07. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies

    Hydrodynamic bubble coarsening in off-critical vapour-liquid phase separation

    Full text link
    Late-stage coarsening in off-critical vapour-liquid phase separation is re-examined. In the limit of bubbles of vapour distributed throughout a continuous liquid phase, it is argued that coarsening proceeds via inertial hydrodynamic bubble collapse. This replaces the Lifshitz-Slyozov-Wagner mechanism seen in binary liquid mixtures. The arguments are strongly supported by simulations in two dimensions using a novel single-component soft sphere fluid.Comment: 5 pages, 3 figures, revtex3.

    Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates

    Get PDF
    Ozonolysis of isoprene, one of the most abundant volatile organic compounds emitted into the Earth’s atmosphere, generates two four-carbon unsaturated Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). The extended conjugation between the vinyl substituent and carbonyl oxide groups of these Criegee intermediates facilitates rapid electrocyclic ring closures that form five-membered cyclic peroxides, known as dioxoles. This study reports the first experimental evidence of this novel decay pathway, which is predicted to be the dominant atmospheric sink for specific conformational forms of MVK-oxide (anti) and MACR-oxide (syn) with the vinyl substituent adjacent to the terminal O atom. The resulting dioxoles are predicted to undergo rapid unimolecular decay to oxygenated hydrocarbon radical products, including acetyl, vinoxy, formyl, and 2-methylvinoxy radicals. In the presence of O₂, these radicals rapidly react to form peroxy radicals (ROO), which quickly decay via carbon-centered radical intermediates (QOOH) to stable carbonyl products that were identified in this work. The carbonyl products were detected under thermal conditions (298 K, 10 Torr He) using multiplexed photoionization mass spectrometry (MPIMS). The main products (and associated relative abundances) originating from unimolecular decay of anti-MVK-oxide and subsequent reaction with O₂ are formaldehyde (88 ± 5%), ketene (9 ± 1%), and glyoxal (3 ± 1%). Those identified from the unimolecular decay of syn-MACR-oxide and subsequent reaction with O₂ are acetaldehyde (37 ± 7%), vinyl alcohol (9 ± 1%), methylketene (2 ± 1%), and acrolein (52 ± 5%). In addition to the stable carbonyl products, the secondary peroxy chemistry also generates OH or HO₂ radical coproducts

    Amisulpride augmentation in clozapine-unresponsive schizophrenia: A double-blind, placebo-controlled, randomised trial of clinical and cost-effectiveness.

    Get PDF
    BACKGROUND: When treatment-refractory schizophrenia shows an insufficient response to a trial of clozapine, clinicians commonly add a second antipsychotic, despite the lack of robust evidence to justify this practice. OBJECTIVES: The main objectives of the study were to establish the clinical effectiveness and cost-effectiveness of augmentation of clozapine medication with a second antipsychotic, amisulpride, for the management of treatment-resistant schizophrenia. DESIGN: The study was a multicentre, double-blind, individually randomised, placebo-controlled trial with follow-up at 12 weeks. SETTINGS: The study was set in NHS multidisciplinary teams in adult psychiatry. PARTICIPANTS: Eligible participants were people aged 18-65 years with treatment-resistant schizophrenia unresponsive, at a criterion level of persistent symptom severity and impaired social function, to an adequate trial of clozapine monotherapy. INTERVENTIONS: Interventions comprised clozapine augmentation over 12 weeks with amisulpride or placebo. Participants received 400 mg of amisulpride or two matching placebo capsules for the first 4 weeks, after which there was a clinical option to titrate the dosage of amisulpride up to 800 mg or four matching placebo capsules for the remaining 8 weeks. MAIN OUTCOME MEASURES: The primary outcome measure was the proportion of 'responders', using a criterion response threshold of a 20% reduction in total score on the Positive and Negative Syndrome Scale. RESULTS: A total of 68 participants were randomised. Compared with the participants assigned to placebo, those receiving amisulpride had a greater chance of being a responder by the 12-week follow-up (odds ratio 1.17, 95% confidence interval 0.40 to 3.42) and a greater improvement in negative symptoms, although neither finding had been present at 6-week follow-up and neither was statistically significant. Amisulpride was associated with a greater side effect burden, including cardiac side effects. Economic analyses indicated that amisulpride augmentation has the potential to be cost-effective in the short term [net saving of between £329 and £2011; no difference in quality-adjusted life-years (QALYs)] and possibly in the longer term. LIMITATIONS: The trial under-recruited and, therefore, the power of statistical analysis to detect significant differences between the active and placebo groups was limited. The economic analyses indicated high uncertainty because of the short duration and relatively small number of participants. CONCLUSIONS: The risk-benefit of amisulpride augmentation of clozapine for schizophrenia that has shown an insufficient response to a trial of clozapine monotherapy is worthy of further investigation in larger studies. The size and extent of the side effect burden identified for the amisulpride-clozapine combination may partly reflect the comprehensive assessment of side effects in this study. The design of future trials of such a treatment strategy should take into account that a clinical response may be not be evident within the 4- to 6-week follow-up period usually considered adequate in studies of antipsychotic treatment of acute psychotic episodes. Economic evaluation indicated the need for larger, longer-term studies to address uncertainty about the extent of savings because of amisulpride and impact on QALYs. The extent and nature of the side effect burden identified for the amisulpride-clozapine combination has implications for the nature and frequency of safety and tolerability monitoring of clozapine augmentation with a second antipsychotic in both clinical and research settings. TRIAL REGISTRATION: EudraCT number 2010-018963-40 and Current Controlled Trials ISRCTN68824876. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 21, No. 49. See the NIHR Journals Library website for further project information

    Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate

    Get PDF
    Isoprene has the highest emission into Earth’s atmosphere of any nonmethane hydrocarbon. Atmospheric processing of alkenes, including isoprene, via ozonolysis leads to the formation of zwitterionic reactive intermediates, known as Criegee intermediates (CIs). Direct studies have revealed that reactions involving simple CIs can significantly impact the tropospheric oxidizing capacity, enhance particulate formation, and degrade local air quality. Methyl vinyl ketone oxide (MVK-oxide) is a four-carbon, asymmetric, resonance-stabilized CI, produced with 21 to 23% yield from isoprene ozonolysis, yet its reactivity has not been directly studied. We present direct kinetic measurements of MVK-oxide reactions with key atmospheric species using absorption spectroscopy. Direct UV-Vis absorption spectra from two independent flow cell experiments overlap with the molecular beam UV-Vis-depletion spectra reported recently [M. F. Vansco, B. Marchetti, M. I. Lester, J. Chem. Phys. 149, 44309 (2018)] but suggest different conformer distributions under jet-cooled and thermal conditions. Comparison of the experimental lifetime herein with theory indicates only the syn-conformers are observed; anti-conformers are calculated to be removed much more rapidly via unimolecular decay. We observe experimentally and predict theoretically fast reaction of syn-MVK-oxide with SO₂ and formic acid, similar to smaller alkyl-substituted CIs, and by contrast, slow removal in the presence of water. We determine products through complementary multiplexed photoionization mass spectrometry, observing SO₃ and identifying organic hydroperoxide formation from reaction with SO₂ and formic acid, respectively. The tropospheric implications of these reactions are evaluated using a global chemistry and transport model

    Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate

    Get PDF
    Isoprene has the highest emission into Earth’s atmosphere of any nonmethane hydrocarbon. Atmospheric processing of alkenes, including isoprene, via ozonolysis leads to the formation of zwitterionic reactive intermediates, known as Criegee intermediates (CIs). Direct studies have revealed that reactions involving simple CIs can significantly impact the tropospheric oxidizing capacity, enhance particulate formation, and degrade local air quality. Methyl vinyl ketone oxide (MVK-oxide) is a four-carbon, asymmetric, resonance-stabilized CI, produced with 21 to 23% yield from isoprene ozonolysis, yet its reactivity has not been directly studied. We present direct kinetic measurements of MVK-oxide reactions with key atmospheric species using absorption spectroscopy. Direct UV-Vis absorption spectra from two independent flow cell experiments overlap with the molecular beam UV-Vis-depletion spectra reported recently [M. F. Vansco, B. Marchetti, M. I. Lester, J. Chem. Phys. 149, 44309 (2018)] but suggest different conformer distributions under jet-cooled and thermal conditions. Comparison of the experimental lifetime herein with theory indicates only the syn-conformers are observed; anti-conformers are calculated to be removed much more rapidly via unimolecular decay. We observe experimentally and predict theoretically fast reaction of syn-MVK-oxide with SO₂ and formic acid, similar to smaller alkyl-substituted CIs, and by contrast, slow removal in the presence of water. We determine products through complementary multiplexed photoionization mass spectrometry, observing SO₃ and identifying organic hydroperoxide formation from reaction with SO₂ and formic acid, respectively. The tropospheric implications of these reactions are evaluated using a global chemistry and transport model

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Cellular and Viral Factors Regulating Merkel Cell Polyomavirus Replication

    Get PDF
    Merkel cell polyomavirus (MCV), a previously unrecognized component of the human viral skin flora, was discovered as a mutated and clonally-integrated virus inserted into Merkel cell carcinoma (MCC) genomes. We reconstructed a replicating MCV clone (MCV-HF), and then mutated viral sites required for replication or interaction with cellular proteins to examine replication efficiency and viral gene expression. Three days after MCV-HF transfection into 293 cells, although replication is not robust, encapsidated viral DNA and protein can be readily isolated by density gradient centrifugation and typical ∼40 nm diameter polyomavirus virions are identified by electron microscopy. The virus has an orderly gene expression cascade during replication in which large T (LT) and 57kT proteins are first expressed by day 2, followed by expression of small T (sT) and VP1 proteins. VP1 and sT proteins are not detected, and spliced 57kT is markedly diminished, in the replication-defective virus suggesting that early gene splicing and late gene transcription may be dependent on viral DNA replication. MCV replication and encapsidation is increased by overexpression of MCV sT, consistent with sT being a limiting factor during virus replication. Mutation of the MCV LT vacuolar sorting protein hVam6p (Vps39) binding site also enhances MCV replication while exogenous hVam6p overexpression reduces MCV virion production by >90%. Although MCV-HF generates encapsidated wild-type MCV virions, we did not find conditions for persistent transmission to recipient cell lines suggesting that MCV has a highly restricted tropism. These studies identify and highlight the role of polyomavirus DNA replication in viral gene expression and show that viral sT and cellular hVam6p are important factors regulating MCV replication. MCV-HF is a molecular clone that can be readily manipulated to investigate factors affecting MCV replication

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore