146 research outputs found

    Measurement of Insulation Compaction in the Cryogenic Fuel Tanks at Kennedy Space Center by Fast/Thermal Neutron Techniques

    Get PDF
    The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Th ere is evidence that some of the perlite has compacted over time, com promising the thermal performance and possibly also structural integr ity of the tanks. Therefore an Non-destructive Testing (NDT) method for measuring the perlite density or void fraction is urgently needed. Methods based on neutrons are good candidates because they can readil y penetrate through the 1.75 cm outer steel shell and through the ent ire 120 cm thickness of the perlite zone. Neutrons interact with the nuclei of materials to produce characteristic gamma rays which are the n detected. The gamma ray signal strength is proportional to the atom ic number density. Consequently, if the perlite is compacted then the count rates in the individual peaks in the gamma ray spectrum will i ncrease. Perlite is a feldspathic volcanic rock made up of the major elements Si, AI, Na, K and 0 along with some water. With commercially available portable neutron generators it is possible to produce simul taneously fluxes of neutrons in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scatt ering which is sensitive to Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA) and this is sensitive to Si, AI, Na, Kand H. Thus the two energy ranges produce complementary information. The R&D program has three phases: numerical simulations of neutron and gamma ray transport with MCNP s oftware, evaluation of the system in the laboratory on test articles and finally mapping of the perlite density in the cryogenic tanks at KSC. The preliminary MCNP calculations have shown that the fast/therma l neutron NDT method is capable of distinguishing between expanded an d compacted perlite with excellent statistics

    Are digital interventions for smoking cessation in pregnancy effective?:A systematic review and meta-analysis

    Get PDF
    Smoking in pregnancy remains a global public health issue due to foetal health risks and potential maternal complications. The aims of this systematic review and meta-analysis were to explore: (1) whether digital interventions for pregnancy smoking cessation are effective, (2) the impact of intervention platform on smoking cessation, (3) the associations between specific Behaviour Change Techniques (BCTs) delivered within interventions and smoking cessation, and (4) the association between the total number of BCTs delivered and smoking cessation. Systematic searches of nine databases resulted in the inclusion of 12 published articles (n = 2970). The primary meta-analysis produced a sample-weighted odds ratio (OR) of 1.44 (95% CI 1.04–2.00, p=0.03) in favour of digital interventions compared with comparison groups. Computer-based (OR=3.06, 95% CI 1.28 – 7.33) and text-message interventions (OR=1.59, 95% CI 1.07 – 2.38) were the most effective digital platform. Moderator analyses revealed seven BCTs associated with smoking cessation: information about antecedents; action planning; problem solving; goal setting (behaviour); review behaviour goals; social support (unspecified); and pros and cons. A meta-regression suggested that interventions using larger numbers of BCTs produced the greatest effects. This paper highlights the potential for digital interventions to improve rates of smoking cessation in pregnancy

    Corrigendum to “Environmental and life-history factors influence inter-colony multidimensional niche metrics of a breeding Arctic marine bird” [Sci. Total Environ. 796 (2021) 148935] (Science of the Total Environment (2021) 796, (S0048969721040079), (10.1016/j.scitotenv.2021.148935))

    Get PDF
    The authors regret that the printed version of the above article contained an omission of an individual deserving of co-authorship. The correct and final version follows. The authors would like to apologise for any inconvenience caused. \u3c Reyd A. Smith1⁎, David J. Yurkowski2, Kyle J.L. Parkinson1, Jérôme Fort3, Holly L. Hennin4, H. Grant Gilchrist4, Keith A. Hobson5, Mark L. Mallory6, Paco Bustamante3, Jóhannis Danielsen7, Svend E. Garbus8, Sveinn A. Hanssen9, Jón Einar Jónsson10, Christopher J. Latty11, Ellen Magnúsdóttir10, Børge Moe9, Glen J. Parsons12, Christian Sonne8, Grigori Tertitski13, and Oliver P. Love1\u3e Windsor, Windsor, Ontario, Canada, N9B 3P4 2 Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada, R3T 2N6 3 Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS – La Rochelle University, La Rochelle, France, FR-17000 4 Environment and Climate Change Canada, Ottawa, Ontario, Canada, K0A 1H0. 5 Western University, London, Ontario, Canada, N6A 3K7 6Acadia University, Wolfville, Nova Scotia, Canada, B4P 2R6 7 Faroe Marine Research Institute, Tórshavn, Faroe Islands, FO-110 8 Aarhus University, Roskilde, Denmark, DK-4000 9 Norwegian Institute for Nature Research, Tromsø, Norway, N-9296 10 University of Iceland\u27s Research Centre at Snæfellsnes, Hafnargata 3, 340, Stykkishólmur, Iceland 11 Arctic National Wildlife Refuge, U.S. Fish and Wildlife Service, Fairbanks, Alaska, United States, 99701 12 Nova Scotia Department of Lands and Forestry, Kentville, Nova Scotia, Canada, B4N 4E5 13 Institute of Geography of the Russian Academy of Sciences, Moscow, Russia, 119017\u3

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine
    corecore