1,615 research outputs found

    'It’d be useful, but I wouldn’t use it':barriers to university students’ feedback seeking and recipience

    Get PDF
    For feedback to be effective, it must be used by the receiver. Prior research has outlined numerous reasons why students’ use of feedback is sometimes limited, but there has been little systematic exploration of these barriers. In 11 activity-oriented focus groups, 31 undergraduate Psychology students discussed how they use assessment feedback. The data revealed many barriers that inhibit use of feedback, ranging from students’ difficulties with decoding terminology, to their unwillingness to expend effort. Thematic analysis identified four underlying psychological processes: awareness, cognisance, agency, and volition. We argue that these processes should be considered when designing interventions to encourage students’ engagement with feedback. Whereas the barriers identified could all in principle be removed, we propose that doing so would typically require – or would at least benefit from – a sharing of responsibility between teacher and student. The data highlight the importance of training students to be proactive receivers of feedback

    Supporting learners’ agentic engagement with feedback:a systematic review and a taxonomy of recipience processes

    Get PDF
    Much has been written in the educational psychology literature about effective feedback and how to deliver it. However, it is equally important to understand how learners actively receive, engage with, and implement feedback. This article reports a systematic review of the research evidence pertaining to this issue. Through an analysis of 195 outputs published between 1985 and early 2014, we identified various factors that have been proposed to influence the likelihood of feedback being used. Furthermore, we identified diverse interventions with the common aim of supporting and promoting learners' agentic engagement with feedback processes. We outline the various components used in these interventions, and the reports of their successes and limitations. Moreover we propose a novel taxonomy of four recipience processes targeted by these interventions. This review and taxonomy provide a theoretical basis for conceptualizing learners' responsibility within feedback dialogues and for guiding the strategic design and evaluation of interventions. Receiving feedback on one's skills and understanding is an invaluable part of the learning process, benefiting learners far more than does simply receiving praise or punishment (Black & Wiliam, 1998 Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5, 7–74. doi:10.1080/0969595980050102[Taylor & Francis Online]; Hattie & Timperley, 2007 Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77, 81–112. doi:10.3102/003465430298487[CrossRef], [Web of Science ®]). Inevitably, the benefits of receiving feedback are not uniform across all circumstances, and so it is imperative to understand how these gains can be maximized. There is increasing consensus that a critical determinant of feedback effectiveness is the quality of learners' engagement with, and use of, the feedback they receive. However, studies investigating this engagement are underrepresented in academic research (Bounds et al., 2013 Bounds, R., Bush, C., Aghera, A., Rodriguez, N., Stansfield, R. B., & Santeen, S. A. (2013). Emergency medicine residents' self-assessments play a critical role when receiving feedback. Academic Emergency Medicine, 20, 1055–1061. doi:10.1111/acem.12231[CrossRef], [PubMed], [Web of Science ®]), which leaves a “blind spot” in our understanding (Burke, 2009 Burke, D. (2009). Strategies for using feedback students bring to higher education. Assessment & Evaluation in Higher Education, 34, 41–50. doi:10.1080/02602930801895711[Taylor & Francis Online], [Web of Science ®]). With this blind spot in mind, the present work sets out to systematically map the research literature concerning learners' proactive recipience of feedback. We use the term “proactive recipience” here to connote a state or activity of engaging actively with feedback processes, thus emphasizing the fundamental contribution and responsibility of the learner (Winstone, Nash, Rowntree, & Parker, in press Winstone, N. E., Nash, R. A., Rowntree, J., & Parker, M. (in press). ‘It'd be useful, but I wouldn't use it’: Barriers to university students' feedback seeking and recipience. Studies in Higher Education. doi: 10.1080/03075079.2015.1130032[Taylor & Francis Online]). In other words, just as Reeve and Tseng (2011 Reeve, J., & Tseng, M. (2011). Agency as a fourth aspect of student engagement during learning activities. Contemporary Educational Psychology, 36, 257–267. doi:10.1016/j.cedpsych.2011.05.002[CrossRef], [Web of Science ®]) defined “agentic engagement” as a “student's constructive contribution into the flow of the instruction they receive” (p. 258), likewise proactive recipience is a form of agentic engagement that involves the learner sharing responsibility for making feedback processes effective

    Petrological and geochemical characterisation of the sarsen stones at Stonehenge.

    Get PDF
    Little is known of the properties of the sarsen stones (or silcretes) that comprise the main architecture of Stonehenge. The only studies of rock struck from the monument date from the 19th century, while 20th century investigations have focussed on excavated debris without demonstrating a link to specific megaliths. Here, we present the first comprehensive analysis of sarsen samples taken directly from a Stonehenge megalith (Stone 58, in the centrally placed trilithon horseshoe). We apply state-of-the-art petrographic, mineralogical and geochemical techniques to two cores drilled from the stone during conservation work in 1958. Petrographic analyses demonstrate that Stone 58 is a highly indurated, grain-supported, structureless and texturally mature groundwater silcrete, comprising fine-to-medium grained quartz sand cemented by optically-continuous syntaxial quartz overgrowths. In addition to detrital quartz, trace quantities of silica-rich rock fragments, Fe-oxides/hydroxides and other minerals are present. Cathodoluminescence analyses show that the quartz cement developed as an initial <10 μm thick zone of non-luminescing quartz followed by ~16 separate quartz cement growth zones. Late-stage Fe-oxides/hydroxides and Ti-oxides line and/or infill some pores. Automated mineralogical analyses indicate that the sarsen preserves 7.2 to 9.2 area % porosity as a moderately-connected intergranular network. Geochemical data show that the sarsen is chemically pure, comprising 99.7 wt. % SiO2. The major and trace element chemistry is highly consistent within the stone, with the only magnitude variations being observed in Fe content. Non-quartz accessory minerals within the silcrete host sediments impart a trace element signature distinct from standard sedimentary and other crustal materials. 143Nd/144Nd isotope analyses suggest that these host sediments were likely derived from eroded Mesozoic rocks, and that these Mesozoic rocks incorporated much older Mesoproterozoic material. The chemistry of Stone 58 has been identified recently as representative of 50 of the 52 remaining sarsens at Stonehenge. These results are therefore representative of the main stone type used to build what is arguably the most important Late Neolithic monument in Europe

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Measured and Predicted Solute Transport in a Tile Drained Field

    Get PDF
    Most solute transport measurement techniques are tedious and require extensive soil excavation. A field experiment was conducted to evaluate whether surface transport properties determined by a nondestructive time domain reflectometry (TDR) technique could be used to accurately predict tile flux concentrations. A 14 by 14 m field plot selected above a 1.1-m deep tile drain was studied. Low electrical conductivity (EC) water was sprinkled on the plot surface, and after reaching a steady-state condition, a pulse of calcium chloride solution (16.3 cm) with an EC of 23 dS m−1 was applied through the same sprinklers. Time domain reflectometry equipment was used to record the change in EC of surface (∼ top 2 cm) soil at 45 locations. The EC of the tile drainage flow was measured continuously with an EC probe. The surface convective lognormal transfer (CLT) function parameters, log mean irrigation depth, μI, and its standard deviation, σI, were found to be 3.44 and 0.94 [ln(cm)], respectively, for a reference depth of 110 cm. These surface parameters were used in a one-dimensional (1-D) CLT model and in a two-dimensional (2-D) model (CLT vertical function combined with exponential horizontal transfer function) to predict the tile flux concentrations. The 1-D CLT model predicted an earlier arrival time of chemicals to the tile drain than observed values. The root mean square error, RMSE, of the 1-D CLT predictions was 0.123, and the coefficient of efficiency, E, was −0.47. The 2-D model predictions of tile flux concentrations were similar to the observed values. The root mean squared errors (RMSE) and E were 0.023 and 0.94, respectively. The findings suggest that in this field soil, the surface solute transport properties determined by TDR could be combined with a 2-D transport model to make reasonable predictions of tile flux concentrations
    corecore