291 research outputs found

    Spectral features of Earth-like planets and their detectability at different orbital distances around F, G, and K-type stars

    Full text link
    We investigate the spectral appearance of Earth-like exoplanets in the HZ of different main sequence stars at different orbital distances. We furthermore discuss for which of these scenarios biomarker absorption bands may be detected during primary or secondary transit with near-future telescopes and instruments.We analyze the spectra taking into account different filter bandpasses of two photometric instruments planned to be mounted to the JWST. We analyze in which filters and for which scenarios molecular absorption bands are detectable when using the space-borne JWST or the ground-based telescope E-ELT. Absorption bands of CO2, H2O, CH4 and O3 are clearly visible in high-resolution spectra as well as in the filters of photometric instruments. However, only during primary eclipse bands of CO2, H2O and O3 are detectable for all scenarios when using photometric instruments and an E-ELT telescope setup. CH4 is only detectable at the outer HZ of the K star since here the atmospheric modeling results in very high abundances. Since the detectable CO2 and H2O bands overlap, separate bands need to be observed to prove their existence in the atmosphere. In order to detect H2O in a separate band, a S/N>7 needs to be achieved for E-ELT observations, e.g. by co-adding at least 10 transit observations. Using a spaceborne telescope like the JWST enables the detection of CO2 at 4.3mu, which is not possible for ground-based observations due to the Earth's atmospheric absorption. Hence combining observations of spaceborne and groundbased telescopes might allow to detect the presence of the biomarker molecule O3 and the related compounds H2O and CO2 in a planetary atmosphere. Other absorption bands using the JWST can only be detected for much higher S/Ns, which is not achievable by just co-adding transit observations since this would be far beyond the planned mission time of JWST.(abridged)Comment: 15 pages, 8 figure

    Non-Gaussianity of quantum states: an experimental test on single-photon added coherent states

    Get PDF
    Non Gaussian states and processes are useful resources in quantum information with continuous variables. An experimentally accessible criterion has been proposed to measure the degree of non Gaussianity of quantum states, based on the conditional entropy of the state with a Gaussian reference. Here we adopt such criterion to characterise an important class of non classical states, single-photon added coherent states. Our studies demonstrate the reliability and sensitivity of this measure, and use it to quantify how detrimental is the role of experimental imperfections in our realisation

    Small scale structure in diffuse molecular gas from repeated FUSE and visible spectra of HD 34078

    Get PDF
    We present preliminary results from an ongoing program devoted to a study of small scale structure in the spatial distribution of molecular gas. Our work is based on multi-epoch FUSE and visible observations of HD34078. A detailed comparison of H2, CH and CH+ absorption lines is performed. No short term variations are seen (except for highly excited H2) but long-term changes in N(CH) are clearly detected when comparing our data to spectra taken about 10 years ago.Comment: 4 pages, 2 figures, To appear in the Proceedings of the XVII IAP Colloquium "Gaseous Matter in Galaxies and Intergalactic Space

    Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays

    Get PDF
    Increasing interest is devoted to carbohydrates for their roles in plant immunity. Some of them are elicitors of plant defenses whereas other ones act as signaling molecules in a manner similar to phytohormones. This review first describes the main classes of carbohydrates associated to plant immunity, their role and mode of action. More precisely, the state of the art about perception of “PAMP, MAMP and DAMP type” oligosaccharides is presented and examples of induced defense events are provided. A particular attention is paid to the structure / activity relationships of these compounds. The role of sugars as signaling molecules, especially in plant microbe interactions, is also presented. Secondly, the potentialities and limits of foliar sprays of carbohydrates to stimulate plant immunity for crop protection against diseases are discussed, with focus on the roles of the leaf cuticle and phyllosphere microflora.Peer reviewe

    Measuring stellar granulation during planet transits

    Get PDF
    Context. Stellar activity and convection-related surface structures might cause bias in planet detection and characterization that use these transits. Surface convection simulations help to quantify the granulation signal. Aims. We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger grid and synthetic images computed with the radiative transfer code Optim3D to model the transits of three prototype planets: a hot Jupiter, a hot Neptune, and a terrestrial planet. Methods. We computed intensity maps from RHD simulations of the Sun and a K-dwarf star at different wavelength bands from optical to far-infrared that cover the range of several ground-and space-based telescopes which observe exoplanet transits. We modeled the transit using synthetic stellar-disk images obtained with a spherical-tile imaging method and emulated the temporal variation of the granulation intensity generating random images covering a granulation time-series of 13.3 h. We measured the contribution of the stellar granulation on the light curves during the planet transit. Results. We identified two types of granulation noise that act simultaneously during the planet transit: (i) the intrinsic change in the granulation pattern with timescale (e.g., 10 min for solar-type stars assumed in this work) is smaller than the usual planet transit (~hours as in our prototype cases); and (ii) the fact that the transiting planet occults isolated regions of the photosphere that differ in local surface brightness as a result of convective-related surface structures. First, we showed that our modeling approach returns granulation timescale fluctuations that are comparable with what has been observed for the Sun. Then, our statistical approach shows that the granulation pattern of solar and K-dwarf-type stars have a non-negligible effect of the light curve depth during the transit, and, consequentially on the determination of the planet transit parameters such as the planet radius (up to 0.90% and ~0.47% for terrestrial and gaseous planets, respectively). We also showed that larger (or smaller) orbital inclination angles with respect to values corresponding to transit at the stellar center display a shallower transit depth and longer ingress and egress times, but also granulation fluctuations that are correlated to the center-to-limb variation: they increase (or decrease) the value of the inclination, which amplifies the fluctuations. The granulation noise appears to be correlated among the different wavelength ranges either in the visible or in the infrared regions. Conclusions. The prospects for planet detection and characterization with transiting methods are excellent with access to large amounts of data for stars. The granulation has to be considered as an intrinsic uncertainty (as a result of stellar variability) on the precise measurements of exoplanet transits of planets. The full characterization of the granulation is essential for determining the degree of uncertainty on the planet parameters. In this context, the use of 3D RHD simulations is important to measure the convection-related fluctuations. This can be achieved by performing precise and continuous observations of stellar photometry and radial velocity, as we explained with RHD simulations, before, after, and during the transit period

    IRIM at TRECVID 2011: Semantic Indexing and Instance Search

    Get PDF
    12 pages - TRECVID workshop notebook papers/slides available at http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.htmlInternational audienceThe IRIM group is a consortium of French teams work- ing on Multimedia Indexing and Retrieval. This paper describes its participation to the TRECVID 2011 se- mantic indexing and instance search tasks. For the semantic indexing task, our approach uses a six-stages processing pipelines for computing scores for the likeli- hood of a video shot to contain a target concept. These scores are then used for producing a ranked list of im- ages or shots that are the most likely to contain the tar- get concept. The pipeline is composed of the following steps: descriptor extraction, descriptor optimization, classification, fusion of descriptor variants, higher-level fusion, and re-ranking. We evaluated a number of dif- ferent descriptors and tried different fusion strategies. The best IRIM run has a Mean Inferred Average Pre- cision of 0.1387, which ranked us 5th out of 19 partic- ipants. For the instance search task, we we used both object based query and frame based query. We formu- lated the query in standard way as comparison of visual signatures either of object with parts of DB frames or as a comparison of visual signatures of query and DB frames. To produce visual signatures we also used two apporaches: the first one is the baseline Bag-Of-Visual- Words (BOVW) model based on SURF interest point descriptor; the second approach is a Bag-Of-Regions (BOR) model that extends the traditional notion of BOVW vocabulary not only to keypoint-based descrip- tors but to region based descriptors

    IRIM at TRECVID 2012: Semantic Indexing and Instance Search

    Get PDF
    International audienceThe IRIM group is a consortium of French teams work- ing on Multimedia Indexing and Retrieval. This paper describes its participation to the TRECVID 2012 se- mantic indexing and instance search tasks. For the semantic indexing task, our approach uses a six-stages processing pipelines for computing scores for the likeli- hood of a video shot to contain a target concept. These scores are then used for producing a ranked list of im- ages or shots that are the most likely to contain the tar- get concept. The pipeline is composed of the following steps: descriptor extraction, descriptor optimization, classi cation, fusion of descriptor variants, higher-level fusion, and re-ranking. We evaluated a number of dif- ferent descriptors and tried di erent fusion strategies. The best IRIM run has a Mean Inferred Average Pre- cision of 0.2378, which ranked us 4th out of 16 partici- pants. For the instance search task, our approach uses two steps. First individual methods of participants are used to compute similrity between an example image of in- stance and keyframes of a video clip. Then a two-step fusion method is used to combine these individual re- sults and obtain a score for the likelihood of an instance to appear in a video clip. These scores are used to ob- tain a ranked list of clips the most likely to contain the queried instance. The best IRIM run has a MAP of 0.1192, which ranked us 29th on 79 fully automatic runs

    Overview : Integrative and Comprehensive Understanding on Polar Environments (iCUPE) - concept and initial results

    Get PDF
    The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. We set up the ERA-PLANET Strand 4 project "iCUPE - integrative and Comprehensive Understanding on Polar Environments" to provide novel insights and observational data on global grand challenges with an Arctic focus. We utilize an integrated approach combining in situ observations, satellite remote sensing Earth observations (EOs), and multi-scale modeling to synthesize data from comprehensive long-term measurements, intensive campaigns, and satellites to deliver data products, metrics, and indicators to stakeholders concerning the environmental status, availability, and extraction of natural resources in the polar areas. The iCUPE work consists of thematic state-of-the-art research and the provision of novel data in atmospheric pollution, local sources and transboundary transport, the characterization of arctic surfaces and their changes, an assessment of the concentrations and impacts of heavy metals and persistent organic pollutants and their cycling, the quantification of emissions from natural resource extraction, and the validation and optimization of satellite Earth observation (EO) data streams. In this paper we introduce the iCUPE project and summarize initial results arising out of the integration of comprehensive in situ observations, satellite remote sensing, and multi-scale modeling in the Arctic context.Peer reviewe
    • 

    corecore