We investigate the spectral appearance of Earth-like exoplanets in the HZ of
different main sequence stars at different orbital distances. We furthermore
discuss for which of these scenarios biomarker absorption bands may be detected
during primary or secondary transit with near-future telescopes and
instruments.We analyze the spectra taking into account different filter
bandpasses of two photometric instruments planned to be mounted to the JWST. We
analyze in which filters and for which scenarios molecular absorption bands are
detectable when using the space-borne JWST or the ground-based telescope E-ELT.
Absorption bands of CO2, H2O, CH4 and O3 are clearly visible in high-resolution
spectra as well as in the filters of photometric instruments. However, only
during primary eclipse bands of CO2, H2O and O3 are detectable for all
scenarios when using photometric instruments and an E-ELT telescope setup. CH4
is only detectable at the outer HZ of the K star since here the atmospheric
modeling results in very high abundances. Since the detectable CO2 and H2O
bands overlap, separate bands need to be observed to prove their existence in
the atmosphere. In order to detect H2O in a separate band, a S/N>7 needs to be
achieved for E-ELT observations, e.g. by co-adding at least 10 transit
observations. Using a spaceborne telescope like the JWST enables the detection
of CO2 at 4.3mu, which is not possible for ground-based observations due to the
Earth's atmospheric absorption. Hence combining observations of spaceborne and
groundbased telescopes might allow to detect the presence of the biomarker
molecule O3 and the related compounds H2O and CO2 in a planetary atmosphere.
Other absorption bands using the JWST can only be detected for much higher
S/Ns, which is not achievable by just co-adding transit observations since this
would be far beyond the planned mission time of JWST.(abridged)Comment: 15 pages, 8 figure