157 research outputs found

    Elegance persists in the purification of K+ channels

    Full text link

    Arrangement of Kv1 α subunits dictates sensitivity to tetraethylammonium

    Get PDF
    Shaker-related Kv1 channels contain four channel-forming α subunits. Subfamily member Kv1.1 often occurs oligomerized with Kv1.2 α subunits in synaptic membranes, and so information was sought on the influence of their positions within tetramers on the channels’ properties. Kv1.1 and 1.2 α genes were tandem linked in various arrangements, followed by expression as single-chain proteins in mammalian cells. As some concatenations reported previously seemed not to reliably position Kv1 subunits in their assemblies, the identity of expressed channels was methodically evaluated. Surface protein, isolated by biotinylation of intact transiently transfected HEK-293 cells, gave Kv1.1/1.2 reactivity on immunoblots with electrophoretic mobilities corresponding to full-length concatenated tetramers. There was no evidence of protein degradation, indicating that concatemers were delivered intact to the plasmalemma. Constructs with like genes adjacent (Kv1.1-1.1-1.2-1.2 or Kv1.2-1.2-1.1-1.1) yielded delayed-rectifying, voltage-dependent K+ currents with activation parameters and inactivation kinetics slightly different from the diagonally positioned genes (Kv1.1-1.2-1.1-1.2 or 1.2–1.1-1.2-1.1). Pore-blocking petidergic toxins, α dendrotoxin, agitoxin-1, tityustoxin-Kα, and kaliotoxin, were unable to distinguish between the adjacent and diagonal concatamers. Unprecedentedly, external application of the pore-blocker tetraethylammonium (TEA) differentially inhibited the adjacent versus diagonal subunit arrangements, with diagonal constructs having enhanced susceptibility. Concatenation did not directly alter the sensitivities of homomeric Kv1.1 or 1.2 channels to TEA or the toxins. TEA inhibition of currents generated by channels made up from dimers (Kv1.1-1.2 and/or Kv1.2-1.1) was similar to the adjacently arranged constructs. These collective findings indicate that assembly of α subunits can be directed by this optimized concatenation, and that subunit arrangement in heteromeric Kv channels affects TEA affinity

    Distinctive Role of KV1.1 Subunits in the Biology and Functions of Low Threshold K+ Channels with Implication for Neurological Disease

    Get PDF
    This document is the Accepted Manuscript version of the following article: Saak V. Ovsepian; Marie LeBerre; Volker Steuber; Valerie B. O’Leary; Christian Leibold; & J. Oliver Dolly; ‘Distinctive role of KV1.1 subunit in the biology and functions of low threshold K+ channels with implications for neurological disease’, Pharmacology & Therapeutics, Vol. 159, March 2016, pp. 93-101. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ The version of record is available on line at doi: http:dx.doi.org/10.1016/j.pharmthera.2016.01.005 © 2016 Elsevier Inc. All rights reserved.The diversity of pore-forming subunits of KV1 channels (KV1.1–KV1.8) affords their physiological versatility and predicts a range of functional impairments resulting from genetic aberrations. Curiously, identified so far human neurological conditions associated with dysfunctions of KV1 channels have been linked exclusively to mutations in the KCNA1 gene encoding for the KV1.1 subunit. The absence of phenotypes related to irregularities in other subunits, including the prevalent KV1.2 subunit of neurons is highly perplexing given that deletion of the corresponding kcna2 gene in mouse models precipitates symptoms reminiscent to those of KV1.1 knockouts. Herein, we critically evaluate the molecular and biophysical characteristics of the KV1.1 protein in comparison with others and discuss their role in the greater penetrance of KCNA1 mutations in humans leading to the neurological signs of episodic ataxia type 1 (EA1). Future research and interpretation of emerging data should afford new insights towards a better understanding of the role of KV1.1 in integrative mechanisms of neurons and synaptic functions under normal and disease conditionsPeer reviewedFinal Accepted Versio

    Increasing gene dosage greatly enhances recombinant expression of aquaporins in Pichia pastoris

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When performing functional and structural studies, large quantities of pure protein are desired. Most membrane proteins are however not abundantly expressed in their native tissues, which in general rules out purification from natural sources. Heterologous expression, especially of eukaryotic membrane proteins, has also proven to be challenging. The development of expression systems in insect cells and yeasts has resulted in an increase in successful overexpression of eukaryotic proteins. High yields of membrane protein from such hosts are however not guaranteed and several, to a large extent unexplored, factors may influence recombinant expression levels. In this report we have used four isoforms of aquaporins to systematically investigate parameters that may affect protein yield when overexpressing membrane proteins in the yeast <it>Pichia pastoris</it>.</p> <p>Results</p> <p>By comparing clones carrying a single gene copy, we show a remarkable variation in recombinant protein expression between isoforms and that the poor expression observed for one of the isoforms could only in part be explained by reduced transcript levels. Furthermore, we show that heterologous expression levels of all four aquaporin isoforms strongly respond to an increase in recombinant gene dosage, independent of the amount of protein expressed from a single gene copy. We also demonstrate that the increased expression does not appear to compromise the protein folding and the membrane localisation.</p> <p>Conclusions</p> <p>We report a convenient and robust method based on qPCR to determine recombinant gene dosage. The method is generic for all constructs based on the pPICZ vectors and offers an inexpensive, quick and reliable means of characterising recombinant <it>P. pastoris </it>clones. By using this method we show that: (1) heterologous expression of all aquaporins investigated respond strongly to an increase in recombinant gene dosage (2) expression from a single recombinant gene copy varies in an isoform dependent manner (3) the poor expression observed for AtSIP1;1 is mainly caused by posttranscriptional limitations. The protein folding and membrane localisation seems to be unaffected by increased expression levels. Thus a screen for elevated gene dosage can routinely be performed for identification of <it>P. pastoris </it>clones with high expression levels of aquaporins and other classes of membrane proteins.</p

    Structural diversity of ABC transporters

    Get PDF
    ATP-binding cassette (ABC) transporters form a large superfamily of ATP-dependent protein complexes that mediate transport of a vast array of substrates across membranes. The 14 currently available structures of ABC transporters have greatly advanced insight into the transport mechanism and revealed a tremendous structural diversity. Whereas the domains that hydrolyze ATP are structurally related in all ABC transporters, the membrane-embedded domains, where the substrates are translocated, adopt four different unrelated folds. Here, we review the structural characteristics of ABC transporters and discuss the implications of this structural diversity for mechanistic diversity.</p

    The EBV Immunoevasins vIL-10 and BNLF2a Protect Newly Infected B Cells from Immune Recognition and Elimination

    Get PDF
    Lifelong persistence of Epstein-Barr virus (EBV) in infected hosts is mainly owed to the virus' pronounced abilities to evade immune responses of its human host. Active immune evasion mechanisms reduce the immunogenicity of infected cells and are known to be of major importance during lytic infection. The EBV genes BCRF1 and BNLF2a encode the viral homologue of IL-10 (vIL-10) and an inhibitor of the transporter associated with antigen processing (TAP), respectively. Both are known immunoevasins in EBV's lytic phase. Here we describe that BCRF1 and BNLF2a are functionally expressed instantly upon infection of primary B cells. Using EBV mutants deficient in BCRF1 and BNLF2a, we show that both factors contribute to evading EBV-specific immune responses during the earliest phase of infection. vIL-10 impairs NK cell mediated killing of infected B cells, interferes with CD4+ T-cell activity, and modulates cytokine responses, while BNLF2a reduces antigen presentation and recognition of newly infected cells by EBV-specific CD8+ T cells. Together, both factors significantly diminish the immunogenicity of EBV-infected cells during the initial, pre-latent phase of infection and may improve the establishment of a latent EBV infection in vivo

    CTL Escape Mediated by Proteasomal Destruction of an HIV-1 Cryptic Epitope

    Get PDF
    Cytotoxic CD8+ T cells (CTLs) play a critical role in controlling viral infections. HIV-infected individuals develop CTL responses against epitopes derived from viral proteins, but also against cryptic epitopes encoded by viral alternative reading frames (ARF). We studied here the mechanisms of HIV-1 escape from CTLs targeting one such cryptic epitope, Q9VF, encoded by an HIVgag ARF and presented by HLA-B*07. Using PBMCs of HIV-infected patients, we first cloned and sequenced proviral DNA encoding for Q9VF. We identified several polymorphisms with a minority of proviruses encoding at position 5 an aspartic acid (Q9VF/5D) and a majority encoding an asparagine (Q9VF/5N). We compared the prevalence of each variant in PBMCs of HLA-B*07+ and HLA-B*07- patients. Proviruses encoding Q9VF/5D were significantly less represented in HLA-B*07+ than in HLA-B*07- patients, suggesting that Q9FV/5D encoding viruses might be under selective pressure in HLA-B*07+ individuals. We thus analyzed ex vivo CTL responses directed against Q9VF/5D and Q9VF/5N. Around 16% of HLA-B*07+ patients exhibited CTL responses targeting Q9VF epitopes. The frequency and the magnitude of CTL responses induced with Q9VF/5D or Q9VF/5N peptides were almost equal indicating a possible cross-reactivity of the same CTLs on the two peptides. We then dissected the cellular mechanisms involved in the presentation of Q9VF variants. As expected, cells infected with HIV strains encoding for Q9VF/5D were recognized by Q9VF/5D-specific CTLs. In contrast, Q9VF/5N-encoding strains were neither recognized by Q9VF/5N- nor by Q9VF/5D-specific CTLs. Using in vitro proteasomal digestions and MS/MS analysis, we demonstrate that the 5N variation introduces a strong proteasomal cleavage site within the epitope, leading to a dramatic reduction of Q9VF epitope production. Our results strongly suggest that HIV-1 escapes CTL surveillance by introducing mutations leading to HIV ARF-epitope destruction by proteasomes

    A functional Kv1.2-hERG chimaeric channel expressed in Pichia pastoris.

    Get PDF
    Members of the six-transmembrane segment family of ion channels share a common structural design. However, there are sequence differences between the members that confer distinct biophysical properties on individual channels. Currently, we do not have 3D structures for all members of the family to help explain the molecular basis for the differences in their biophysical properties and pharmacology. This is due to low-level expression of many members in native or heterologous systems. One exception is rat Kv1.2 which has been overexpressed in Pichia pastoris and crystallised. Here, we tested chimaeras of rat Kv1.2 with the hERG channel for function in Xenopus oocytes and for overexpression in Pichia. Chimaera containing the S1-S6 transmembrane region of HERG showed functional and pharmacological properties similar to hERG and could be overexpressed and purified from Pichia. Our results demonstrate that rat Kv1.2 could serve as a surrogate to express difficult-to-overexpress members of the six-transmembrane segment channel family

    Profit enhancing competitive pressure in vertically related industries

    Get PDF
    Coevolution of viruses and their hosts represents a dynamic molecular battle between the immune system and viral factors that mediate immune evasion. After the abandonment of smallpox vaccination, cowpox virus infections are an emerging zoonotic health threat, especially for immunocompromised patients. Here we delineate the mechanistic basis of how cowpox viral CPXV012 interferes with MHC class I antigen processing. This type II membrane protein inhibits the coreTAP complex at the step after peptide binding and peptide-induced conformational change, in blocking ATP binding and hydrolysis. Distinct from other immune evasion mechanisms, TAP inhibition is mediated by a short ER-lumenal fragment of CPXV012, which results from a frameshift in the cowpox virus genome. Tethered to the ER membrane, this fragment mimics a high ER-lumenal peptide concentration, thus provoking a trans-inhibition of antigen translocation as supply for MHC I loading. These findings illuminate the evolution of viral immune modulators and the basis of a fine-balanced regulation of antigen processing
    • …
    corecore