11 research outputs found

    Characterization of the Inflammatory Microenvironment and Identification of Potential Therapeutic Targets in Wilms Tumors

    Get PDF
    The role of inflammation in cancer has been reported in various adult malignant neoplasms. By contrast, its role in pediatric tumors has not been as well studied. In this study, we have identified and characterized the infiltration of various inflammatory immune cells as well as inflammatory markers in Wilms tumor (WT), the most common renal malignancy in children. Formalin-fixed paraffin-embedded blocks from tumors and autologous normal kidneys were immunostained for inflammatory immune cells (T cells, B cells, macrophages, neutrophils, and mast cells) and inflammatory markers such as cyclooxygenase-2 (COX-2), hypoxia-inducible factor 1α, phosphorylated STAT3, phosphorylated extracellular signal–related kinases 1 and 2, inducible nitric oxide synthase, nitrotyrosine, and vascular endothelial growth factor expression. Overall, we found that there was predominant infiltration of tumor-associated macrophages in the tumor stroma where COX-2 was robustly expressed. The other tumor-associated inflammatory markers were also mostly localized to tumor stroma. Hence, we speculate that COX-2–mediated inflammatory microenvironment may be important in WT growth and potential therapies targeting this pathway may be beneficial and should be tested in clinical settings for the treatment of WTs in children

    Influence of green tea consumption on cigarette smoking-induced biochemical changes in plasma and blood

    No full text
    Cigarette smoking causes numerous adverse biochemical changes in plasma and blood leading to ill health effects for which therapeutic approaches are sought. The present study investigates the effect of green tea consumption on confirmed cigarette smokers. Blood samples were collected from 120 selected human male volunteers categorized in to four groups viz., controls, smokers, control volunteers consuming green tea with no habit of smoking and smokers consuming green tea were analysed. Results showed that altered plasma glucose, HbA1c, hemoglobin, hematocrit, total cholesterol, lipoprotein patterns (HDL, LDL, VLDL) and lipid peroxidation along with vitamins (vitamin-D, vitamin-B12, vitamin-C) and minerals (iron, total iron binding capacity, calcium, sodium, potassium, phosphorous, chloride) followed by the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transferase (γGT) and alkaline phosphatase (ALP). Furthermore, phytochemical analysis of green tea confirmed the presence of phenols, flavonoids and tannins. Antioxidants and free radical scavenging effects of green tea were assessed using 2, 2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH+). Results of this study clearly demonstrated that the adverse changes observed in the above biochemical parameters in smokers were reversed upon green tea supplementation which can be attributed to the phytoconstituents present in green tea. In conclusion, both in vivo and in vitro studies revealed that phytocompounds present in green tea are able to scavenge free radicals and by there offers protection against smoking induced biochemical alterations
    corecore