26 research outputs found

    A Tale of Four ā€œCarpā€: Invasion Potential and Ecological Niche Modeling

    Get PDF
    . We assessed the geographic potential of four Eurasian cyprinid fishes (common carp, tench, grass carp, black carp) as invaders in North America via ecological niche modeling (ENM). These ā€œcarpā€ represent four stages of invasion of the continent (a long-established invader with a wide distribution, a long-established invader with a limited distribution, a spreading invader whose distribution is expanding, and a newly introduced potential invader that is not yet established), and as such illustrate the progressive reduction of distributional disequilibrium over the history of species' invasions.We used ENM to estimate the potential distributional area for each species in North America using models based on native range distribution data. Environmental data layers for native and introduced ranges were imported from state, national, and international climate and environmental databases. Models were evaluated using independent validation data on native and invaded areas. We calculated omission error for the independent validation data for each species: all native range tests were highly successful (all omission values <7%); invaded-range predictions were predictive for common and grass carp (omission values 8.8 and 19.8%, respectively). Model omission was high for introduced tench populations (54.7%), but the model correctly identified some areas where the species has been successful; distributional predictions for black carp show that large portions of eastern North America are at risk.ENMs predicted potential ranges of carp species accurately even in regions where the species have not been present until recently. ENM can forecast species' potential geographic ranges with reasonable precision and within the short screening time required by proposed U.S. invasive species legislation

    Can we accelerate medicinal chemistry by augmenting the chemist with Big Data and artificial intelligence?

    Get PDF
    It is both the best of times and the worst of times to be a medicinal chemist. Massive amounts of data combined with machine-learning and/or artificial intelligence (AI) tools to analyze it can increase our capabilities. However, drug discovery faces severe economic pressure and a high level of societal need set against challenging targets. Here, we show how improving medicinal chemistry by better curating and exchanging knowledge can contribute to improving drug hunting in all disease areas. Although securing intellectual property (IP) is a critical task for medicinal chemists, it impedes the sharing of generic medicinal chemistry knowledge. Recent developments enable the sharing of knowledge both within and between organizations while securing IP. We also explore the effects of the structure of the corporate ecosystem within drug discovery on knowledge sharing

    Multiple Experiment Environments for Testing

    No full text
    . Concurrent simulation (CS) has been used successfully as a replacement for serial simulation. Based on storing differences from experiments, CS saves storage, speeds up simulation time and allows excellent internal observation of events. In this paper, we introduce Multiple Domain Concurrent Simulation (MDCS) which like concurrent simulation, maintains efficiency by only simulating differences. MDCS also allows experiments to interact with one another and create new experiments through the use of domains. These experiments can be traced and observed at any point, providing insight into the origin and causes of new experiments. While many experiment scenarios can be created, MDCS uses dynamic spawning and experiment compression rather than explicit enumeration to ensure that the number of experiment scenarios does not become exhaustive. MDCS does not require any pre-analysis or additions to the circuit under test. Providing this capability in digital logic simulators allows more test ..

    MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression

    No full text
    <div><p>MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 Ɨ 10<sup>āˆ’16</sup>) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.</p></div

    Detection of DNA-DNA and RNA-DNA triplexes by EMSA and NMR, and molecular modeling of miRNA-duplex DNA triplex.

    No full text
    <p><b>(A)</b> EMSA; 5ā€™ ROX-labeled hairpin duplex DNA (0.1 Ī¼M) was incubated for 3-hrs at 22Ā°C in the presence (lanes 2ā€“11) or absence (lane 1) of 2.5 Ī¼M 483-opti DNA oligo, and increasing concentration (30, 60, 150 Ī¼M) of Hoogsteen bond-optimized hsa-miR-483-5p (483-opti, lanes 3ā€“5), hsa-miR-483-5 (483, lanes 6ā€“8), or a scrambled RNA oligo (Scramble, lanes 9ā€“11). Duplexes and triplexes were resolved on a 20% non-denaturing acrylamide gel, and the ROX-signal visualized. Triplex of 483-opti DNA oligo and duplex DNA is readily detected (lane 2). The 483-opti RNA oligo competes with 483-opti DNA oligo for binding to duplex DNA which is evident by increased amounts of duplex DNA and decreased amounts of triplex (compare lanes 3ā€“5 with lane 2). Hsa-miR-483-5p (483) and scrambled RNA, because of the fewer number of favorable Hoogsteen bonds, did not compete with the 483-opti DNA oligo for binding to duplex DNA (lanes 6ā€“7 and 9ā€“10, respectively). <b>(B-C)</b> NMR; Two-Dimensional (2D) [<sup>1</sup>H, <sup>1</sup>H] TOCSY spectra of free single stranded hairpin duplex DNA (blue contours), hairpin duplex DNA combined with hsa-miR-483-5p RNA oligo (green contours; 1:1.5 ratio), and hairpin duplex DNA with single stranded DNA oligo with the same sequence as hsa-miR-483-5p (red contours; 1:1ratio). <b>(B)</b> Thymidine cross-peaks between H6 and H7 (methyl), and <b>(C)</b> cytosine cross-peaks between H5 and H6. Single stranded RNA (hsa-miR-483-5p) or single stranded DNA with hairpin duplex DNA show similar improvement in peak the intensities, and similar chemical shift perturbations/appearance of new peaks highlighted in blue boxes, suggesting that single stranded DNA and single stranded RNA of the same sequence bind to DNA duplex in a similar manner; the major differences (peaks in red boxes) are one peak among thymidine cross-peaks, showing an intermediate change (peak disappearing) with singe stranded RNA while saturated with hairpin duplex DNA, and two new peaks among cytosine cross-peaks showing much higher intensities with single stranded DNA, indicating that the latter DNA binds to duplex DNA duplex with higher binding affinity than RNA, consistent with the results obtained by EMSA. <b>(D)</b> Molecular model of hsa-miR-483-5p-DNA triplex. (I): the model of predicted miRNA and corresponding DNA duplex sequences (16 favorable Hoogsteen pairings). All predicted Hoogsteen base pairs are well maintained after removal of positional and distance restraints(II): negative control (antisense hsa-miR-483-5p) of model with 9 favorable Hoogsteen pairings. Both RNA and DNA duplex are largely twisted and nearly all predicted Hoogsteen pairings cannot be stably maintained. Residues in favor of Hoogsteen hydrogen bond formation are shown in red while the others are shown in blue.</p

    Higher expression of microRNAs forming triplex structures with duplex DNA is more frequently associated with increased gene expression.

    No full text
    <p>MicroRNA and mRNA expression were measured in leukemia cells (ALL) obtained at the time of diagnosis from two cohorts of patients (St. Jude Protocols Total 15 and Total 16). Genome-wide linear correlations between microRNA expression and mRNA expression calculated to form grade 1 triplex structures were assessed in each cohort separately and then a meta-analysis was performed. <b>(A)</b> The distributions of Spearman p-values for associations with positive or <b>(B)</b> negative correlations are shown. Over-representation of small p-values for positive associations was significantly enriched as compared to negative associations.</p
    corecore