25 research outputs found

    The human gut microbiota and glucose metabolism: a scoping review of key bacteria and the potential role of SCFAs

    Get PDF
    The gut microbiota plays a fundamental role in human nutrition and metabolism and may have direct implications for type 2 diabetes and associated preconditions. An improved understanding of relations between human gut microbiota and glucose metabolism could lead to novel opportunities for type 2 diabetes prevention, but human observational studies reporting on such findings have not been extensively reviewed. Here, we review the literature on associations between gut microbiota and markers and stages of glucose dysregulation and insulin resistance in healthy adults and in adults with metabolic disease and risk factors. We present the current evidence for identified key bacteria and their potential roles in glucose metabolism independent of overweight, obesity, and metabolic drugs. We provide support for SCFAs mediating such effects and discuss the role of diet, as well as metabolites derived from diet and gut microbiota interactions. From 5983 initially identified PubMed records, 45 original studies were eligible and reviewed. alpha Diversity and 45 bacterial taxa were associated with selected outcomes. Six taxa were most frequently associated with glucose metabolism: Akkermansia muciniphila, Bifidobacterium longum, Clostridium leptum group, Faecalibacterium prausnitzii, and Faecalibacterium (inversely associated) and Dorea (directly associated). For Dorea and A. muciniphila, associations were independent of metabolic drugs and body measures. For A. muciniphila and F. prausnitzii, limited evidence supported SCFA mediation of potential effects on glucose metabolism. We conclude that observational studies applying metagenomics sequencing to identify species-level relations are warranted, as are studies accounting for confounding factors and investigating SCFA and postprandial glucose metabolism. Such advances in the field will, together with mechanistic and prospective studies and investigations into diet-gut microbiota interactions, have the potential to bring critical insight into roles of gut microbiota and microbial metabolites in human glucose metabolism and to contribute toward the development of novel prevention strategies for type 2 diabetes, including precision nutrition

    Metabolism and metabolomics by MRS

    Get PDF
    The main use of magnetic resonance spectroscopy (MRS) is for the assessment of metabolism in vivo; that is because it has the unique ability to monitor metabolism noninvasively without the use of ionizing radiation. In recent years, MRS has also become widely used for metabolomics, the science that aspires to monitor the metabolome – the totality of small-molecule metabolites in an organism, a cell, or a disease. This article discusses the properties of MRS that make it suitable for metabolomic studies and the reasons why such studies are mainly performed ex vivo, as well as the methods used for preparing samples, performing the MRS and analyzing the resulting data. Further sections discuss MRS detection of metabolic aspects of the common cellular processes apoptosis, necrosis, and autophagy. The final section summarizes metabolic studies of some diseases by MRS: cancer, cardiovascular disease, neurological and neurodegenerative diseases, and muscle disease.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/9780470034590.emrstm146

    Advances in understanding of health‐promoting benefits of medicine and food homology using analysis of gut microbiota and metabolomics

    No full text
    The health-promoting benefits of medicine and food homology (MFH) are known for thousands of years in China. However, active compounds and biological mechanisms are unclear, greatly limiting clinical practice of MFH. The advent of gut microbiota analysis and metabolomics emerge as key tools to discover functional compounds, therapeutic targets, and mechanisms of benefits of MFH. Such studies hold great promise to promote and optimize functional efficacy and development of MFH-based products, for example, foods for daily dietary supplements or for special medical purposes. In this review, we summarized pharmacological effects of 109 species of MFH approved by the Health and Fitness Commission in 2015. Recent studies applying genome sequencing of gut microbiota and metabolomics to explain the activity of MFH in prevention and management of health consequences were extensively reviewed. We discussed the potentiality in future to decipher functional activities of MFH by applying metabolomics-based polypharmacokinetic strategy and multiomics technologies. The needs for personalized MFH recommendations and comprehensive databases have also been highlighted. This review emphasizes current achievements and challenges of the analysis of gut microbiota and metabolomics as a new avenue to understand MFH

    Behavioral Microbiomics: A Multi-Dimensional Approach to Microbial Influence on Behavior

    Get PDF
    International audienceThe role of microbes as a part of animal systems has historically been an under-appreciated aspect of animal life histories. Recently, evidence has emerged that microbes have wide-ranging influences on animal behavior. Elucidating the complex relationships between host-microbe interactions and behavior requires an expanded ecological perspective, involving the host, the microbiome and the environment; which, in combination, is termed the holobiont. We begin by seeking insights from the literature on host-parasite interactions, then expand to consider networks of interactions between members of the microbial community. A central aspect of the environment is host nutrition. We describe how interactions between the nutrient environment, the metabolic and behavioral responses of the host and the microbiome can be studied using an integrative framework called nutritional geometry, which integrates and maps multiple aspects of the host and microbial response in multidimensional nutrient intake spaces
    corecore