56 research outputs found

    Effects of experimental warming on Betula nana epidermal cell growth tested over its maximum climatological growth range

    Get PDF
    Numerous long-term, free-air plant growth facilities currently explore vegetation responses to the ongoing climate change in northern latitudes. Open top chamber (OTC) experiments as well as the experimental set-ups with active warming focus on many facets of plant growth and performance, but information on morphological alterations of plant cells is still scarce. Here we compare the effects of in-situ warming on leaf epidermal cell expansion in dwarf birch, Betula nana in Finland, Greenland, and Poland. The localities of the three in-situ warming experiments represent contrasting regions of B. nana distribution, with the sites in Finland and Greenland representing the current main distribution in low and high Arctic, respectively, and the continental site in Poland as a B. nana relict Holocene microrefugium. We quantified the epidermal cell lateral expansion by microscopic analysis of B. nana leaf cuticles. The leaves were produced in paired experimental treatment plots with either artificial warming or ambient temperature. At all localities, the leaves were collected in two years at the end of the growing season to facilitate between-site and within-site comparison. The measured parameters included the epidermal cell area and circumference, and using these, the degree of cell wall undulation was calculated as an Undulation Index (UI). We found enhanced leaf epidermal cell expansion under experimental warming, except for the extremely low temperature Greenland site where no significant difference occurred between the treatments. These results demonstrate a strong response of leaf growth at individual cell level to growing season temperature, but also suggest that in harsh conditions other environmental factors may limit this response. Our results provide evidence of the relevance of climate warming for plant leaf maturation and underpin the importance of studies covering large geographical scales.Peer reviewe

    Drivers of phytoplankton community structure change with ecosystem ontogeny during the Quaternary

    Get PDF
    Freshwater species are particularly sensitive to climate fluctuations, but little is known of their response to the large-scale environmental change that took place during the Quaternary. This is partly due to the scarcity of continuously preserved freshwater sedimentary records with orbital chronology. We use a 1.363 Ma high-resolution fossil record of planktonic diatoms from ancient Lake Ohrid to evaluate the role of global and regional versus local-scale environmental change in driving temporal community dynamics. By using a Bayesian joint species distribution model, we found that communities were mostly driven by the local-scale environment. Its effects decreased over time, becoming less important than global and regional environment at the onset of the penultimate glacial, 0.183 Ma. Global and regional control over the environment became important with successive deepening of the lake at around 1.0 Ma, and its influence remained persistent until the present. Our high-resolution data demonstrate the critical role of lake depth and its thermal dynamics in determining phytoplankton response to environmental change by influencing lake mixing, nutrient and light availability. With this study we demonstrate the relative impact of various environmental factors and their scale dependant effect on the phytoplankton communities during the Quaternary, emphasizing the importance of not only considering climate fluctuations in driving their structure and temporal dynamics but also the local environment. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Columbus’ footprint in Hispaniola:A paleoenvironmental record of indigenous and colonial impacts on the landscape of the central Cibao Valley, northern Dominican Republic

    Get PDF
    The 1100-year sedimentary record of Laguna Biajaca reveals human-driven landscape changes in the central Cibao Valley, Dominican Republic, Hispaniola. This sediment-filled cutoff meander is located in close proximity to pre-Colonial archaeological sites and a Colonial urban hub. It provided a nutrient-rich floodable locus for agricultural activities for indigenous communities and for the first introduction of Old World crops and cattle in the Americas. Integration of paleoecological proxies revealed the formation of a clear-water body surrounded by a palm-rich forested landscape around 1100 cal yr BP. Changes in the drainage system were linked to human-driven deforestation, which also changed the composition of the vegetation and fungal communities around the site between AD 1150 and 1500 (800 and 700 cal yr BP). Pre-Colonial modifications of the landscape were primarily the result of fire-use and small-scale clearings. Crop cultivation developed between AD 1250 and 1450 (700–500 cal yr BP). Within decades after Columbus’ arrival in Hispaniola in AD 1492, the first impacts of European colonization included the abandonment of indigenous sites and the introduction of Old World domesticated animals. During the 15th and 16th centuries the area underwent intensive land-clearing that allowed for larger scale crop cultivation. An increase of aquatic vegetation points to sediment-filling around AD 1700 (250 cal yr BP). At that time, cattle breeding expanded and rapidly provoked eutrophication while, concurrently, monocultures became regionally established. This paper provides a framework of past environmental dynamics and offers an opportunity to place archaeological findings in a context of natural and anthropogenic change

    The Lateglacial to early Holocene tephrochronological record from Lake HĂ€melsee, Germany: a key site within the European tephra framework

    Get PDF
    Here we present the results of a detailed cryptotephra investigation through the Lateglacial to early Holocene transition, from a new sediment core record obtained from Lake HĂ€melsee, Germany. Two tephra horizons, the Laacher See Tephra (Eifel Volcanic Field) and the Saksunarvatn Ash (Iceland), have been previously described in this partially varved sediment record, indicating the potential of the location as an important Lateglacial tephrochronological site in northwest Europe. We have identified three further tephra horizons, which we correlate to: the ~12.1 ka BP Vedde Ash (Iceland), the ~11 ka BP Ulmener Maar tephra (Eifel Volcanic Field) and the ~10.8 ka BP Askja-S tephra (Iceland). Three additional cryptotephra deposits have been found (locally named HÄM_T1616, HÄM_T1470 and HÄM_T1456-1455), which cannot be correlated to any known eruption at present. Geochemical analysis of the deposits suggests that these cryptotephras most likely have an Icelandic origin. Our discoveries provide age constraints for the new sediment records from Lake HĂ€melsee and enable direct stratigraphic correlations to be made with other tephra-bearing sites across Europe. The new tephrostratigraphic record, within a partially varved Lateglacial sediment record highlights the importance of Lake HĂ€melsee as a key site within the European tephra lattice

    Deep drilling reveals massive shifts in evolutionary dynamics after formation of ancient ecosystem

    Get PDF
    The scarcity of high-resolution empirical data directly tracking diversity over time limits our understanding of speciation and extinction dynamics and the drivers of rate changes. Here, we analyze a continuous species-level fossil record of endemic diatoms from ancient Lake Ohrid, along with environmental and climate indicator time series since lake formation 1.36 million years (Ma) ago. We show that speciation and extinction rates nearly simultaneously decreased in the environmentally dynamic phase after ecosystem formation and stabilized after deep-water conditions established in Lake Ohrid. As the lake deepens, we also see a switch in the macroevolutionary trade-off, resulting in a transition from a volatile assemblage of short-lived endemic species to a stable community of long-lived species. Our results emphasize the importance of the interplay between environmental/climate change, ecosystem stability, and environmental limits to diversity for diversification processes. The study also provides a new understanding of evolutionary dynamics in long-lived ecosystems

    The geodynamic and limnological evolution of Balkan Lake Ohrid, possibly the oldest extant lake in Europe

    Get PDF
    Studies of the upper 447 m of the DEEP site sediment succession from central Lake Ohrid, Balkan Peninsula, North Macedonia and Albania provided important insights into the regional climate history and evolutionary dynamics since permanent lacustrine conditions established at 1.36 million years ago (Ma). This paper focuses on the entire 584-m-long DEEP sediment succession and a comparison to a 197-m-long sediment succession from the Pestani site ~5 km to the east in the lake, where drilling ended close to the bedrock, to unravel the earliest history of Lake Ohrid and its basin development. 26Al/10Be dating of clasts from the base of the DEEP sediment succession implies that the sedimentation in the modern basin started at c. 2 Ma. Geophysical, sedimentological and micropalaeontological data allow for chronological information to be transposed from the DEEP to the Pestani succession. Fluvial conditions, slack water conditions, peat formation and/or complete desiccation prevailed at the DEEP and Pestani sites until 1.36 and 1.21 Ma, respectively, before a larger lake extended over both sites. Activation of karst aquifers to the east probably by tectonic activity and a potential existence of neighbouring Lake Prespa supported filling of Lake Ohrid. The lake deepened gradually, with a relatively constant vertical displacement rate of ~0.2 mm a−1 between the central and the eastern lateral basin and with greater water depth presumably during interglacial periods. Although the dynamic environment characterized by local processes and the fragmentary chronology of the basal sediment successions from both sites hamper palaeoclimatic significance prior to the existence of a larger lake, the new data provide an unprecedented and detailed picture of the geodynamic evolution of the basin and lake that is Europe’s presumed oldest extant freshwater lake

    Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe

    Get PDF
    Wildfire occurrence is influenced by climate, vegetation and human activities. A key challenge for understanding the risk of fires is quantifying the mediating effect of vegetation on fire regimes. Here, we explore the relative importance of Holocene land cover, land use, dominant functional forest type, and climate dynamics on biomass burning in temperate and boreo-nemoral regions of central and eastern Europe over the past 12 kyr. We used an extensive data set of Holocene pollen and sedimentary charcoal records, in combination with climate simulations and statistical modelling. Biomass burning was highest during the early Holocene and lowest during the mid-Holocene in all three ecoregions (Atlantic, continental and boreo-nemoral) but was more spatially variable over the past 3–4 kyr. Although climate explained a significant variance in biomass burning during the early Holocene, tree cover was consistently the highest predictor of past biomass burning over the past 8 kyr. In temperate forests, biomass burning was high at ~ 45% tree cover and decreased to a minimum at between 60% and 70% tree cover. In needleleaf-dominated forests, biomass burning was highest at ~60 %–65%tree cover and steeply declined at > 65% tree cover. Biomass burning also increased when arable lands and grasslands reached ~15 %–20 %, although this relationship was variable depending on land use practice via ignition sources, fuel type and quantities. Higher tree cover reduced the amount of solar radiation reaching the forest floor and could provide moister, more wind-protected microclimates underneath canopies, thereby decreasing fuel flammability. Tree cover at which biomass burning increased appears to be driven by warmer and drier summer conditions during the early Holocene and by increasing human influence on land cover during the late Holocene. We suggest that longterm fire hazard may be effectively reduced through land cover management, given that land cover has controlled fire regimes under the dynamic climates of the Holocene

    The European Pollen Database in Neotoma: Expanding horizons to new proxy communities

    No full text

    Millennial-scale perspective on biodiversity conservation of the forest-steppe ecotone in Europe

    No full text
    Paleoecological studies document that grasslands with a high conservation value in the European forest-steppe ecotone are often anthropogenically derived, requiring management to avoid woodland recovery. Nevertheless, naturally open areas often persisted within this ecotone, explaining the high richness of these grassland

    A growing degree day inference model based on mountain birch leaf cuticle analysis over a latitudinal gradient in Fennoscandia

    No full text
    Cuticle analysis performed on fossil Betula nana (L.) leaves provides a strong proxy to reconstruct past growing season thermal properties expressed as growing degree days (GDD5). This proxy is so far available for the dwarf birch only and, therewith, restricted to regions or past periods of subarctic climatic conditions. In this study, we analysed modern leaf samples of mountain birch (Betula pubescens spp. czerepanovii (N. I. Orlova) HÀmet-Ahti), which has a wider temperature range than the dwarf birch B. nana. The strong latitudinal climate gradient over Fennoscandia provides a unique opportunity to track growing season temperature imprints in the epidermis cell morphology of the modern mountain birch. We quantified the GDD5-dependent epidermal cell expansion, expressed as the undulation index (UI), over a 10° latitudinal transect translating to a range from ~1500°C to ~600°C GDD5 in 2016. Our results indicate that even in mountain birch the UI is positively correlated to GDD5 and, moreover, is largely independent of regional habitat conditions such as daylight length and precipitation. These results imply that in addition to the earlier studied (sub-)arctic dwarf birch, the closely related mountain birch can also be utilized in GDD5 reconstructions. The abundant presence of fossil mountain birch leaves in sediments from warmer than (sub)arctic palaeoclimates enables the reconstruction of growing season climate dynamics over past phases of climate change, overcoming earlier restrictions of the proxy related to spatial and temporal species occurrence as well as local light regimes
    • 

    corecore