146 research outputs found

    Adenosine metabolized from extracellular ATP ameliorates organ injury by triggering A2BR signaling

    Get PDF
    BACKGROUND: Trauma and a subsequent hemorrhagic shock (T/HS) result in insufficient oxygen delivery to tissues and multiple organ failure. Extracellular adenosine, which is a product of the extracellular degradation of adenosine 5' triphosphate (ATP) by the membrane-embedded enzymes CD39 and CD73, is organ protective, as it participates in signaling pathways, which promote cell survival and suppress inflammation through adenosine receptors including the A2BR. The aim of this study was to evaluate the role of CD39 and CD73 delivering adenosine to A2BRs in regulating the host's response to T/HS. METHODS: T/HS shock was induced by blood withdrawal from the femoral artery in wild-type, global knockout (CD39, CD73, A2BR) and conditional knockout (intestinal epithelial cell-specific deficient VillinCre-A2BRfl/fl) mice. At 3 three hours after resuscitation, blood and tissue samples were collected to analyze organ injury. RESULTS: T/HS upregulated the expression of CD39, CD73, and the A2BR in organs. ATP and adenosine levels increased after T/HS in bronchoalveolar lavage fluid. CD39, CD73, and A2BR mimics/agonists alleviated lung and liver injury. Antagonists or the CD39, CD73, and A2BR knockout (KO) exacerbated lung injury, inflammatory cytokines, and chemokines as well as macrophage and neutrophil infiltration and accumulation in the lung. Agonists reduced the levels of the liver enzymes aspartate transferase and alanine transaminase in the blood, whereas antagonist administration or CD39, CD73, and A2BR KO enhanced enzyme levels. In addition, intestinal epithelial cell-specific deficient VillinCre-A2BRfl/fl mice showed increased intestinal injury compared to their wild-type VillinCre controls. CONCLUSION: In conclusion, the CD39-CD73-A2BR axis protects against T/HS-induced multiple organ failure

    Bacterial flagellin elicits widespread innate immune defense mechanisms, apoptotic signaling, and a sepsis-like systemic inflammatory response in mice

    Get PDF
    Introduction: Systemic inflammation in sepsis is initiated by interactions between pathogen molecular motifs and specific host receptors, especially toll-like receptors (TLRs). Flagellin is the main flagellar protein of motile microorganisms and is the ligand of TLR5. The distribution of TLR5 and the actions of flagellin at the systemic level have not been established. Therefore, we determined TLR5 expression and the ability of flagellin to trigger prototypical innate immune responses and apoptosis in major organs from mice. Methods: Male Balb/C mice (n = 80) were injected intravenously with 1-5 mu g recombinant Salmonella flagellin. Plasma and organ samples were obtained after 0.5 to 6 h, for molecular investigations. The expression of TLR5, the activation state of nuclear factor kappa B (NF kappa B) and mitogen-activated protein kinases (MAPKs) [extracellular related kinase (ERK) and c-jun-NH2 terminal kinase (JNK)], the production of cytokines [tumor necrosis alpha (TNF alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), macrophage inhibitory protein-2 (MIP-2) and soluble triggering receptor expressed on myeloid cells (TREM-1)], and the apoptotic cleavage of caspase-3 and its substrate Poly(ADP-ribose) polymerase (PARP) were determined in lung, liver, gut and kidney at different time-points. The time-course of plasma cytokines was evaluated up to 6 h after flagellin. Results: TLR5 mRNA and protein were constitutively expressed in all organs. In these organs, flagellin elicited a robust activation of NF kappa B and MAPKs, and induced significant production of the different cytokines evaluated, with slight interorgan variations. Plasma TNF alpha, IL-6 and MIP-2 disclosed a transient peak, whereas IL-1 beta and soluble TREM-1 steadily increased over 6 h. Flagellin also triggered a marked cleavage of caspase-3 and PARP in the intestine, pointing to its ability to promote significant apoptosis in this organ. Conclusions: Bacterial flagellin elicits prototypical innate immune responses in mice, leading to the release of multiple pro-inflammatory cytokines in the lung, small intestine, liver and kidney, and also activates apoptotic signalling in the gut. Therefore, this bacterial protein may represent a critical mediator of systemic inflammation and intestinal barrier failure in sepsis due to flagellated micro-organism

    Bacterial Flagellin Triggers Cardiac Innate Immune Responses and Acute Contractile Dysfunction

    Get PDF
    BACKGROUND: Myocardial contractile failure in septic shock may develop following direct interactions, within the heart itself, between molecular motifs released by pathogens and their specific receptors, notably those belonging to the toll-like receptor (TLR) family. Here, we determined the ability of bacterial flagellin, the ligand of mammalian TLR5, to trigger myocardial inflammation and contractile dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: TLR5 expression was determined in H9c2 cardiac myoblasts, in primary rat cardiomyocytes, and in whole heart extracts from rodents and humans. The ability of flagellin to activate pro-inflammatory signaling pathways (NF-kappaB and MAP kinases) and the expression of inflammatory cytokines was investigated in H9c2 cells, and, in part, in primary cardiomyocytes, as well as in the mouse myocardium in vivo. The influence of flagellin on left ventricular function was evaluated in mice by a conductance pressure-volume catheter. Cardiomyocytes and intact myocardium disclosed significant TLR5 expression. In vitro, flagellin activated NF-kappaB, MAP kinases, and the transcription of inflammatory genes. In vivo, flagellin induced cardiac activation of NF-kappaB, expression of inflammatory cytokines (TNF alpha, IL-1 beta, IL-6, MIP-2 and MCP-1), and provoked a state of reversible myocardial dysfunction, characterized by cardiac dilation, reduced ejection fraction, and decreased end-systolic elastance. CONCLUSION/SIGNIFICANCE: These results are the first to indicate that flagellin has the ability to trigger cardiac innate immune responses and to acutely depress myocardial contractility

    Fat-Specific Protein 27/CIDEC Promotes Development of Alcoholic Steatohepatitis in Mice and Humans

    Get PDF
    Alcoholic steatohepatitis (ASH) is the progressive form of alcoholic liver disease and may lead to cirrhosis and hepatocellular carcinoma. We studied mouse models and human tissues to identify molecules associated with ASH progression, and focused on mouse fat-specific protein 27 (FSP-27)/human cell death-inducing DFF45-like effector C (CIDEC) protein, which is expressed in white adipose tissues and promotes formation of fat droplets

    Restoration of Altered MicroRNA Expression in the Ischemic Heart with Resveratrol

    Get PDF
    Resveratrol, a constituent of red wine, is important for cardioprotection. MicroRNAs are known regulators for genes involved in resveratrol-mediated cardiac remodeling and the regulatory pathway involving microRNA has not been studied so far.We explored the cardioprotection by resveratrol in ischemia/reperfusion model of rat and determined cardiac functions. miRNA profile was determined from isolated RNA using quantitative Real-time PCR based array. Systemic analyses of miRNA array and theirs targets were determined using a number of computational approaches.Cardioprotection by resveratrol and its derivative in ischemia/reperfusion [I/R] rat model was examined with miRNA expression profile. Unique expression pattern were found for each sample, particularly with resveratrol [pure compound] and longevinex [commercial resveratrol formulation] pretreated hearts. Longevinex and resveratrol pretreatment modulates the expression pattern of miRNAs close to the control level based on PCA analyses. Differential expression was observed in over 25 miRNAs, some of them, such as miR-21 were previously implicated in cardiac remodeling. The target genes for the differentially expressed miRNA include genes of various molecular function such as metal ion binding, sodium-potassium ion, transcription factors, which may play key role in reducing I/R injury.Rats pretreated with resveratrol for 3 weeks leads to significant cardioprotection against ischemia/reperfusion injury. A unique signature of miRNA profile is observed in control heart pretreated with resveratrol or longevinex. We have determined specific group of miRNA in heart that have altered during IR injuries. Most of those altered microRNA expressions modulated close to their basal level in resveratrol or longevinex treated I/R mice

    Detection of cannabinoid receptor type 2 in native cells and zebrafish with a highly potent, cell-permeable fluorescent probe.

    Get PDF
    Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs

    Redox homeostasis and age-related deficits in neuromuscular integrity and function

    Get PDF
    Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age-related muscleatrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributorto morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population(estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associatedwith neuromuscular ageing, will inevitably increase. Desp ite the importance of this ‘epidemic’ problem, the primarybiochemical and molecular mechanisms underlying age-related deficits in neuromuscular integrity and function have not beenfully determined. Skeleta l muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources,and age-associated oxidative damage has been suggested to be a major fac tor contributing to the initiation and progression ofmuscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, anddisruption of these events over time due to altered redox control has been proposed as an underlying mechanis m of ageing.The role of oxidants in ageing has been extensively examined in different model organisms that have undergone geneticmanipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function ofRONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redoxhomeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken inmurine models to examine the role of redox regulation in age-related muscle atrophy and weakness

    Key skills of incoming STEM-students

    No full text
    For Europe to remain at the forefront of scientific and technological development, the current shortage of people trained in these fields at secondary and higher education has to be overcome. While some progress has been made in increasing enrolment in Science, Technology, Engineering and Mathematics (STEM) programs in most European countries as stipulated by the Lisbon Objectives, the most pressing problem is now that of low retention (i.e., high dropout) rates in STEM programs. The readySTEMgo project aims to improve the retention rates of higher education STEM programs by focusing on the academic readiness of incoming STEM-students. A successful identification of students with an increased propensity to drop out opens perspectives to develop specific intervention aimed at these students. To achieve the above goal, we have identified the key STEM skills. Students‟ course-taking and math and science GPA in secondary school are the most consistent predictors, as proven already in many other studies. Additionally, the results of this project indicate that some self-regulatory skills are also among the prime indicators for underperformance in the first year of a science and engineering programme. And an important conclusion is that the secondary school teacher board can judge the capabilities of their students with a high predictive value. This calls for a closer collaboration between universities and secondary schools in counselling students during their decision-making processes.status: publishe
    corecore