218 research outputs found

    Mapping midwifery and obstetric units in England

    Get PDF
    OBJECTIVE: to describe the configuration of midwifery units, both alongside&free-standing, and obstetric units in England. DESIGN: national survey amongst Heads of Midwifery in English Maternity Services SETTING: National Health Service (NHS) in England PARTICIPANTS: English Maternity Services Measurements descriptive statistics of Alongside Midwifery Units and Free-standing Midwifery Units and Obstetric Units and their annual births/year in English Maternity Services FINDINGS: alongside midwifery units have nearly doubled since 2010 (n = 53-97); free-standing midwifery units have increased slightly (n = 58-61). There has been a significant reduction in maternity services without either an alongside or free-standing midwifery unit (75-32). The percentage of all births in midwifery units has trebled, now representing 14% of all births in England. This masks significant differences in percentage of all births in midwifery units between different maternity services with a spread of 4% to 31%. KEY CONCLUSIONS: In some areas of England, women have no access to a local midwifery unit, despite the National Institute for Health&Clinical Excellence (NICE) recommending them as an important place of birth option for low risk women. The numbers of midwifery units have increased significantly in England since 2010 but this growth is almost exclusively in alongside midwifery units. The percentage of women giving birth in midwifery units varies significantly between maternity services suggesting that many midwifery units are underutilised. IMPLICATIONS FOR PRACTICE: Both the availability and utilisation of midwifery units in England could be improved

    Effect of the Deepening of the Tasman Gateway on the Global Ocean

    Get PDF
    We examine the effect of the deepening of the Tasman Seaway at the end of the Eocene in a climate model with realistic late Eocene bathymetry and winds. For this, we have constructed an Eocene numerical model based on the University of Victoria climate model with wind forcing derived from a fully coupled Eocene simulation. The model climate state is characterized by an oceanic meridional overturning circulation (MOC) involving Southern Hemisphere sinking and a northward atmospheric moisture transport across the equator. The deepening of the Tasman Seaway in the presence of an open Drake Passage and the associated establishment of the Antarctic Circumpolar Current (ACC) have a limited climatic impact on Antarctica. Nonetheless, the Antarctic deep sinking regions cool sufficiently to lead to a global deep ocean cooling of 3°C. No initiation of Northern Component Water is found, indicating that this may require the development of a more mature ACC. Previous studies suggest that the Ross Sea gyre cools the east coast of Australia, and expected the deepening of the Tasman Seaway to lead to a warming east of Australia due to the introduction of warmer water from the Australo-Antarctic Gulf. We here find that this warming is limited to close to the Australian coast, and that widespread cooling prevails further off shore

    Adrenergic gene polymorphisms and cardiovascular risk in the NHLBI-sponsored Women's Ischemia Syndrome Evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adrenergic gene polymorphisms are associated with cardiovascular and metabolic phenotypes. We investigated the influence of adrenergic gene polymorphisms on cardiovascular risk in women with suspected myocardial ischemia.</p> <p>Methods</p> <p>We genotyped 628 women referred for coronary angiography for eight polymorphisms in the α<sub>1A</sub>-, β<sub>1</sub>-, β<sub>2</sub>- and β<sub>3</sub>-adrenergic receptors (<it>ADRA1A</it>, <it>ADRB1, ADRB2</it>, <it>ADRB3</it>, respectively), and their signaling proteins, G-protein β 3 subunit (<it>GNB3</it>) and G-protein α subunit (<it>GNAS</it>). We compared the incidence of death, myocardial infarction, stroke, or heart failure between genotype groups in all women and women without obstructive coronary stenoses.</p> <p>Results</p> <p>After a median of 5.8 years of follow-up, 115 women had an event. Patients with the <it>ADRB1 </it>Gly389 polymorphism were at higher risk for the composite outcome due to higher rates of myocardial infarction (adjusted hazard ratio [HR] 3.63, 95% confidence interval [95%CI] 1.17–11.28; Gly/Gly vs. Arg/Arg HR 4.14, 95%CI 0.88–19.6). The risk associated with <it>ADRB1 </it>Gly389 was limited to those without obstructive CAD (n = 400, P<sub>interaction </sub>= 0.03), albeit marginally significant in this subset (HR 1.71, 95%CI 0.91–3.19). Additionally, women without obstructive CAD carrying the <it>ADRB3 </it>Arg64 variant were at higher risk for the composite endpoint (HR 2.10, 95%CI 1.05–4.24) due to subtle increases in risk for all of the individual endpoints. No genetic associations were present in women with obstructive CAD.</p> <p>Conclusion</p> <p>In this exploratory analysis, common coding polymorphisms in the β<sub>1</sub>- and β<sub>3</sub>-adrenergic receptors increased cardiovascular risk in women referred for diagnostic angiography, and could improve risk assessment, particularly for women without evidence of obstructive CAD.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00000554.</p

    A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes

    Get PDF
    Copyright @ 2012, American Society for Microbiology.Human coronaviruses are associated with upper respiratory tract infections that occasionally spread to the lungs and other organs. Although airway epithelial cells represent an important target for infection, the respiratory epithelium is also composed of an elaborate network of dendritic cells (DCs) that are essential sentinels of the immune system, sensing pathogens and presenting foreign antigens to T lymphocytes. In this report, we show that in vitro infection by human coronavirus 229E (HCoV-229E) induces massive cytopathic effects in DCs, including the formation of large syncytia and cell death within only few hours. In contrast, monocytes are much more resistant to infection and cytopathic effects despite similar expression levels of CD13, the membrane receptor for HCoV-229E. While the differentiation of monocytes into DCs in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 requires 5 days, only 24 h are sufficient for these cytokines to sensitize monocytes to cell death and cytopathic effects when infected by HCoV-229E. Cell death induced by HCoV-229E is independent of TRAIL, FasL, tumor necrosis factor alpha, and caspase activity, indicating that viral replication is directly responsible for the observed cytopathic effects. The consequence of DC death at the early stage of HCoV-229E infection may have an impact on the early control of viral dissemination and on the establishment of long-lasting immune memory, since people can be reinfected multiple times by HCoV-229E

    How does ocean biology affect atmospheric pCO2? Theory and models

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07032, doi:10.1029/2007JC004598.This paper examines the sensitivity of atmospheric pCO2 to changes in ocean biology that result in drawdown of nutrients at the ocean surface. We show that the global inventory of preformed nutrients is the key determinant of atmospheric pCO2 and the oceanic carbon storage due to the soft-tissue pump (OCS soft ). We develop a new theory showing that under conditions of perfect equilibrium between atmosphere and ocean, atmospheric pCO2 can be written as a sum of exponential functions of OCS soft . The theory also demonstrates how the sensitivity of atmospheric pCO2 to changes in the soft-tissue pump depends on the preformed nutrient inventory and on surface buffer chemistry. We validate our theory against simulations of nutrient depletion in a suite of realistic general circulation models (GCMs). The decrease in atmospheric pCO2 following surface nutrient depletion depends on the oceanic circulation in the models. Increasing deep ocean ventilation by increasing vertical mixing or Southern Ocean winds increases the atmospheric pCO2 sensitivity to surface nutrient forcing. Conversely, stratifying the Southern Ocean decreases the atmospheric CO2 sensitivity to surface nutrient depletion. Surface CO2 disequilibrium due to the slow gas exchange with the atmosphere acts to make atmospheric pCO2 more sensitive to nutrient depletion in high-ventilation models and less sensitive to nutrient depletion in low-ventilation models. Our findings have potentially important implications for both past and future climates.While at MIT, I.M. was supported by the NOAA Postdoctoral Program in Climate and Global Change, administered by the University Corporation for Atmospheric Research

    The North Atlantic subpolar gyre in four high resolution models

    Get PDF
    The authors present the first quantitative comparison between new velocity datasets and high-resolution models in the North Atlantic subpolar gyre [1/10° Parallel Ocean Program model (POPNA10), Miami Isopycnic Coordinate Ocean Model (MICOM), ° Atlantic model (ATL6), and Family of Linked Atlantic Ocean Model Experiments (FLAME)]. At the surface, the model velocities agree generally well with World Ocean Circulation Experiment (WOCE) drifter data. Two noticeable exceptions are the weakness of the East Greenland coastal current in models and the presence in the surface layers of a strong southwestward East Reykjanes Ridge Current. At depths, the most prominent feature of the circulation is the boundary current following the continental slope. In this narrow flow, it is found that gridded float datasets cannot be used for a quantitative comparison with models. The models have very different patterns of deep convection, and it is suggested that this could be related to the differences in their barotropic transport at Cape Farewell. Models show a large drift in watermass properties with a salinization of the Labrador Sea Water. The authors believe that the main cause is related to horizontal transports of salt because models with different forcing and vertical mixing share the same salinization problem. A remarkable feature of the model solutions is the large westward transport over Reykjanes Ridge [10 Sv (Sv ≡ 106 m3 s−1) or more
    corecore