36 research outputs found

    Neural primacy of the salience processing system in schizophrenia

    Get PDF
    For effective information processing, two large-scale distributed neural networks appear to be critical: a multimodal executive system anchored on the dorsolateral prefrontal cortex (DLPFC) and a salience system anchored on the anterior insula. Aberrant interaction among distributed networks is a feature of psychiatric disorders such as schizophrenia. We used whole-brain Granger causal modeling using resting fMRI and observed a significant failure of both the feedforward and reciprocal influence between the insula and the DLPFC in schizophrenia. Further, a significant failure of directed influence from bilateral visual cortices to the insula was also seen in patients. These findings provide compelling evidence for a breakdown of the salience-execution loop in the clinical expression of psychosis. In addition, this offers a parsimonious explanation for the often-observed “frontal inefficiency,” the failure to recruit prefrontal system when salient or novel information becomes available in patients with schizophrenia

    Characterization of an Artificial Swine-Origin Influenza Virus with the Same Gene Combination as H1N1/2009 Virus: A Genesis Clue of Pandemic Strain

    Get PDF
    Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1) with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus). Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus

    Influenza A virus acquires enhanced pathogenicity and transmissibility after serial passages in swine

    Get PDF
    Genetic and phylogenetic analyses suggest that the pandemic H1N1/2009 virus was derived from well-established swine influenza lineages; however, there is no convincing evidence that the pandemic virus was generated from a direct precursor in pigs. Furthermore, the evolutionary dynamics of influenza virus in pigs have not been well documented. Here, we subjected a recombinant virus (rH1N1) with the same constellation makeup as the pandemic H1N1/2009 virus to nine serial passages in pigs. The severity of infection sequentially increased with each passage. Deep sequencing of viral quasispecies from the ninth passage found five consensus amino acid mutations: PB1 A469T, PA 1129T, NA N329D, NS1 N205K, and NEP T48N. Mutations in the hemagglutinin (HA) protein, however, differed greatly between the upper and lower respiratory tracts. Three representative viral clones with the five consensus mutations were selected for functional evaluation. Relative to the parental virus, the three viral clones showed enhanced replication and polymerase activity in vitro and enhanced replication, pathogenicity, and transmissibility in pigs, guinea pigs, and ferrets in vivo. Specifically, two mutants of rH1N1 (PB1 A469T and a combination of NS1 N205K and NEP T48N) were identified as determinants of transmissibility in guinea pigs. Crucially, one mutant viral clone with the five consensus mutations, which also carried D187E, K211E, and S289N mutations in its HA, additionally was able to infect ferrets by airborne transmission as effectively as the pandemic virus. Our findings demonstrate that influenza virus can acquire viral characteristics that are similar to those of the pandemic virus after limited serial passages in pigs

    Exploring the Connection of Choreography and Orchestration with Exception Handling and Finalization/Compensation ⋆

    No full text
    Abstract. Web service choreography describes protocols for multiparty collaboration, whereas orchestration focuses on single peers. One key requirement of choreography is to support transactions, which makes exceptional handling and finalization very important features in modeling choreography. A projection is a procedure which takes a choreography and generates a set of processes in the orchestration level. Given a choreography, how to project exceptional handling and finalization constructs is still an open problem. This paper aims to study exception handling and transactionality in choreographies from a projection view. We propose formal languages for both choreography and orchestration with trace semantics, and give a projection with discussion about its correctness
    corecore