41 research outputs found

    A picogram and nanometer scale photonic crystal opto-mechanical cavity

    Get PDF
    We describe the design, fabrication, and measurement of a cavity opto-mechanical system consisting of two nanobeams of silicon nitride in the near-field of each other, forming a so-called "zipper" cavity. A photonic crystal patterning is applied to the nanobeams to localize optical and mechanical energy to the same cubic-micron-scale volume. The picrogram-scale mass of the structure, along with the strong per-photon optical gradient force, results in a giant optical spring effect. In addition, a novel damping regime is explored in which the small heat capacity of the zipper cavity results in blue-detuned opto-mechanical damping.Comment: 15 pages, 4 figure

    Tunable bipolar optical interactions between guided lightwaves

    Full text link
    The optical binding forces between guided lightwaves in dielectric waveguides can be either repulsive or attractive. So far only attractive force has been observed. Here we experimentally demonstrate a bipolar optical force between coupled nanomechanical waveguides. Both attractive and repulsive optical forces are obtained. The sign of the force can be switched reversibly by tuning the relative phase of the interacting lightwaves. This tunable, bipolar interaction forms the foundation for the operation of a new class of light force devices and circuits.Comment: 4 figure

    Purinergic signalling and immune cells

    Get PDF
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells

    Weak and Straddling Secondary Nicotinic Synapses Can Drive Firing in Rat Sympathetic Neurons and Thereby Contribute to Ganglionic Amplification

    Get PDF
    Interactions between nicotinic excitatory postsynaptic potentials (EPSPs) critically determine whether paravertebral sympathetic ganglia behave as simple synaptic relays or as integrative centers that amplify preganglionic activity. Synaptic connectivity in this system is characterized by an n + 1 pattern of convergence, where each ganglion cell receives one very strong primary input and a variable number (n) of weak secondary inputs that are subthreshold in strength. To test whether pairs of secondary nicotinic EPSPs can summate to fire action potentials (APs) and thus mediate ganglionic gain in the rat superior cervical ganglion, we recorded intracellularly at 34°C and used graded presynaptic stimulation to isolate individual secondary synapses. Weak EPSPs in 40 of 53 neurons had amplitudes of 0.5–7 mV (mean 3.5 ± 0.3 mV). EPSPs evoked by paired pulse stimulation were either depressing (n = 10), facilitating (n = 9), or borderline (n = 10). In 15 of 29 cells, pairs of weak secondary EPSPs initiated spikes when elicited within a temporal window <20 ms, irrespective of EPSP amplitude or paired pulse response type. In six other neurons, we observed novel secondary EPSPs that were strong enough to straddle spike threshold without summation. At stimulus rates <1 Hz straddling EPSPs appeared suprathreshold in strength. However, their limited ability to drive firing could be blocked by the afterhyperpolarization following an AP. When viewed in a computational context, these findings support the concept that weak and straddling secondary nicotinic synapses enable mammalian sympathetic ganglia to behave as use-dependent amplifiers of preganglionic activity

    Diagnostic performance evaluation of sulfate-conjugated cholesterol metabolites as urinary biomarkers of Niemann-Pick disease type C

    No full text
    Background Niemann–Pick disease type C (NPC) is an autosomal recessive inherited disorder with progressive neuronal degeneration. Because conventional diagnostic methods are complicated and invasive, biomarker tests have drawn attention. We aimed to evaluate three urinary conjugated cholesterol metabolites as diagnostic biomarkers for NPC. Methods Urine samples from 23 patients with NPC, 28 healthy controls, and 7 patients with inherited metabolic disorders were analyzed. 3β-Sulfooxy-7β-N-acetylglucosaminyl-5-cholen-24-oic acid and its glycine and taurine conjugates in urine were quantified by liquid chromatography-tandem mass spectrometry. The diagnostic performance of the three metabolites and their total concentration was evaluated. Result Creatinine-corrected concentrations of three metabolites and their total concentration were all significantly higher in NPC patients (0.0098 < P < .0448). The area under the receiver operating curve for all metabolites exceeded 0.95, the clinical specificity was 92–100%, and the clinical sensitivity was ~95%. In the urine of patients with other inherited metabolic diseases, the concentrations of the metabolites were lower than those in the urine of patients with NPC. Conclusion These conjugated cholesterol metabolites in urine can serve as useful diagnostic markers for noninvasive screening of NPC

    Beta-Ketothiolase Deficiency Presenting with Metabolic Stroke After a Normal Newborn Screen in Two Individuals

    No full text
    Beta-ketothiolase (mitochondrial acetoacetyl-CoA thiolase) deficiency is a genetic disorder characterized by impaired isoleucine catabolism and ketone body utilization that predisposes to episodic ketoacidosis. It results from biallelic pathogenic variants in the ACAT1 gene, encoding mitochondrial beta-ketothiolase. We report two cases of beta-ketothiolase deficiency presenting with acute ketoacidosis and metabolic stroke. The first patient presented at 28 months of age with metabolic acidosis and pallidal stroke in the setting of a febrile gastrointestinal illness. Although 2-methyl-3-hydroxybutyric acid and trace quantities of tiglylglycine were present in urine, a diagnosis of glutaric acidemia type I was initially suspected due to the presence of glutaric and 3-hydroxyglutaric acids. A diagnosis of beta-ketothiolase deficiency was ultimately made through whole exome sequencing which revealed compound heterozygous variants in ACAT1. Fibroblast studies for beta-ketothiolase enzyme activity were confirmatory. The second patient presented at 6 months of age with ketoacidosis, and was found to have elevations of urinary 2-methyl-3-hydroxybutyric acid, 2-methylacetoacetic acid, and tiglylglycine. Sequencing of ACAT1 demonstrated compound heterozygous presumed causative variants. The patient exhibited choreoathethosis 2 months after the acute metabolic decompensation. These cases highlight that, similar to a number of other organic acidemias and mitochondrial disorders, beta-ketothiolase deficiency can present with metabolic stroke. They also illustrate the variability in clinical presentation, imaging, and biochemical evaluation that make screening for and diagnosis of this rare disorder challenging, and further demonstrate the value of whole exome sequencing in the diagnosis of metabolic disorders
    corecore