1,140 research outputs found

    Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence

    Get PDF
    Grape quality and yield can be impaired by bunch rot, caused by the necrotrophic fungus Botrytis cinerea. Infection often occurs at flowering, and the pathogen stays quiescent until fruit maturity. Here, we report a molecular analysis of the early interaction between B. cinerea and Vitis vinifera flowers, using a controlled infection system, confocal microscopy and integrated transcriptomic and metabolic analysis of the host and the pathogen. Flowers from fruiting cuttings of the cultivar Pinot Noir were infected with green fluorescent protein (GFP)-labelled B. cinerea and studied at 24 and 96 hours post-inoculation (h.p.i.). We observed that penetration of the epidermis by B. cinerea coincided with increased expression of genes encoding cell-wall-degrading enzymes, phytotoxins and proteases. Grapevine responded with a rapid defence reaction involving 1193 genes associated with the accumulation of antimicrobial proteins, polyphenols, reactive oxygen species and cell wall reinforcement. At 96 h.p.i., the reaction appears largely diminished both in the host and in the pathogen. Our data indicate that the defence responses of the grapevine flower collectively are able to restrict invasive fungal growth into the underlying tissues, thereby forcing the fungus to enter quiescence until the conditions become more favourable to resume pathogenic development

    Induced Resistance in Fruit and Vegetables: A Host Physiological Response Limiting Postharvest Disease Development

    Get PDF
    Harvested fruit and vegetables are perishable, subject to desiccation, show increased respiration during ripening, and are colonized by postharvest fungal pathogens. Induced resistance is a strategy to control diseases by eliciting biochemical processes in fruits and vegetables. This is accomplished by modulating the progress of ripening and senescence, which maintains the produce in a state of heightened resistance to decay-causing fungi. Utilization of induced resistance to protect produce has been improved by scientific tools that better characterize physiological changes in plants. Induced resistance slows the decline of innate immunity after harvest and increases the production of defensive responses that directly inhibit plant pathogens. This increase in defense response in fruits and vegetables contributes to higher amounts of phenols and antioxidant compounds, improving both the quality and appearance of the produce. This review summarizes mechanisms and treatments that induce resistance in harvested fruits and vegetables to suppress fungal colonization. Moreover, it highlights the importance of host maturity and stage of ripening as limiting conditions for the improved expression of induced-resistance processes

    La quiescencia como estado estratégico del proceso infectivo de especies de Colletotrichum

    Get PDF
    Colletotrichum, a genus of Ascomycota fungi with a diversity of species grouped into several species complexes, or clades, is associated with diseases known as "Anthracnose". It affects significantly different tropical and subtropical fruit species. Infections occur in the field and postharvest; quiescent stages are mainly responsible for postharvest losses. An analysis of this pre-infective stage is made based on consulted papers. The infective process is modulated by the length of the quiescent period of the fungus during the vegetative or pre-productive stages of trees. Quiescent stage is determined by the host’s biochemical responses and the pathogen’s activity. Once the pathogen is activated, it develops an infectious necrotrophic process. Colletotrichum quiescence has been studied mainly in subtropical fruits and horticultural species, and the studies highlight the role of volatile compounds, metabolites and enzymes involved in the length and breaking of quiescence, as well as the differential responses according to the phenological stage and the genotype of the plant. Transcriptomic and proteomic analysis of the host-fungus interaction have revealed the role of genes in the occurrence and breaking of quiescence. Knowledge about the quiescence of Colletotrichum in tropical fruits is necessary to improve management efficiency. Detection and induction of quiescent infections has been studied and genomics has allowed to understand the occurrence of quiescence in the infective process; however, in crops in the tropics, such as mango, an important crop in Colombia, questions about associated species and biology of their quiescence are still unanswered.Colletotrichum es un hongo ascomicete, con diversidad de especies agrupadas en complejos o clados y se asocia a enfermedades conocidas, como "Antracnosis" y afecta significativamente especies de frutas tropicales y subtropicales. Las infecciones ocurren en el campo y postcosecha; los estados quiescentes son los principales responsables de pérdidas en postcosecha. Se realizó un análisis de esta etapa pre-infectiva, a partir de publicaciones consultadas. La infección está modulada por la duración del período de quiescencia del hongo durante las etapas vegetativa o pre-productivas de los árboles y está determinado por las respuestas bioquímicas del hospedante y la actividad del patógeno. Una vez se activa el patógeno, se desarrolla un proceso infeccioso necrotrófico. La quiescencia de Colletotrichum se ha estudiado, principalmente, en frutas subtropicales y especies hortícolas y destacan el papel de compuestos volátiles, metabolitos y enzimas en la duración y en la pérdida de la quiescencia, así como las respuestas diferenciales, según la fenología y el genotipo. Análisis transcriptómicos y proteómicos de la interacción hospedante-hongo han revelado el papel de genes en la ocurrencia y pérdida de quiescencia. Conocer la quiescencia de Colletotrichum en frutas tropicales es necesario para hacer más eficiente el manejo de la enfermedad. Se ha estudiado la detección e inducción de infecciones quiescentes y estudios genómicos han permitido entender su ocurrencia durante la infección; sin embargo, en cultivos en el trópico, como el mango, un cultivo importante en Colombia, las preguntas sobre las especies asociadas y la biología de la quiescencia de estas, aún están sin respuesta

    Experience-Induced Interocular Plasticity of Vision in Infancy

    Get PDF
    Animal model studies of amblyopia have generally concluded that enduring effects of monocular deprivation (MD) on visual behavior (i.e., loss of visual acuity) are limited to the deprived eye, and are restricted to juvenile life. We have previously reported, however, that lasting effects of MD on visual function can be elicited in adulthood by stimulating visuomotor experience through the non-deprived eye. To test whether stimulating experience would also induce interocular plasticity of vision in infancy, we assessed in rats from eye-opening on postnatal day (P) 15, the effect of pairing MD with the daily experience of measuring thresholds for optokinetic tracking (OKT). MD with visuomotor experience from P15 to P25 led to a ~60% enhancement of the spatial frequency threshold for OKT through the non-deprived eye during the deprivation, which was followed by loss-of-function (~60% below normal) through both eyes when the deprived eye was opened. Reduced thresholds were maintained into adulthood with binocular OKT experience from P25 to P30. The ability to generate the plasticity and maintain lost function was dependent on visual cortex. Strictly limiting the period of deprivation to infancy by opening the deprived eye at P19 resulted in a comparable loss-of-function. Animals with reduced OKT responses also had significantly reduced visual acuity, measured independently in a discrimination task. Thus, experience-dependent cortical plasticity that can lead to amblyopia is present earlier in life than previously recognized

    How alkalinization drives fungal pathogenicity

    Get PDF
    pH governs most, if not all, processes of life. In fungi, ambient pH acts as a potent regulator of growth and development [1]. Studies conducted primarily in the 2 model organisms Saccharomyces cerevisiae and Aspergillus nidulans have cemented our understanding of how fungi sense and respond to pH. More recently, pH has emerged as a key player in the control of fungal pathogenicity. Infections caused by fungi are often associated with a pH shift in the surrounding host tissue [2±4]. Extracellular alkalinization contributes to fungal virulence, but the underlying mechanisms are not fully understood. Recent studies have revealed new and unexpected ways by which fungi induce host alkalinization to increase their infectious potential. Here, we provide a brief overview of the mechanisms that govern pH signaling in fungi and highlight how recent findings have advanced our understanding of pathogen-induced alkalinization and its role during infection. We also discuss the emerging view that intracellular pH (pHi) acts as a master switch to govern fungal development and pathogenicity
    corecore