177 research outputs found

    Effect of a behavioral intervention for underserved preschool-age children on change in body mass index: A randomized clinical trial

    Get PDF
    IMPORTANCE Prevention of obesity during childhood is critical for children in underserved populations, for whom obesity prevalence and risk of chronic disease are highest. OBJECTIVE To test the effect of a multicomponent behavioral intervention on child body mass index (BMI, calculated as weight in kilograms divided by height in meters squared) growth trajectories over 36 months among preschool-age children at risk for obesity. DESIGN, SETTING, AND PARTICIPANTS A randomized clinical trial assigned 610 parent-child pairs from underserved communities in Nashville, Tennessee, to a 36-month intervention targeting health behaviors or a school-readiness control. Eligible children were between ages 3 and 5 years and at risk for obesity but not yet obese. Enrollment occurred from August 2012 to May 2014; 36-month follow-up occurred from October 2015 to June 2017. INTERVENTIONS The intervention (n = 304 pairs) was a 36-month family-based, community-centered program, consisting of 12 weekly skills-building sessions, followed by monthly coaching telephone calls for 9 months, and a 24-month sustainability phase providing cues to action. The control (n = 306 pairs) consisted of 6 school-readiness sessions delivered over the 36-month study, conducted by the Nashville Public Library. MAIN OUTCOMES AND MEASURES The primary outcome was child BMI trajectory over 36 months. Seven prespecified secondary outcomes included parent-reported child dietary intake and community center use. The Benjamini-Hochberg procedure corrected for multiple comparisons. RESULTS Participants were predominantly Latino (91.4%). At baseline, the mean (SD) child age was 4.3 (0.9) years; 51.9% were female. Household income was below $25 000 for 56.7% of families. Retention was 90.2%. At 36 months, the mean (SD) child BMI was 17.8 (2.2) in the intervention group and 17.8 (2.1) in the control group. No significant difference existed in the primary outcome of BMI trajectory over 36 months (P = .39). The intervention group children had a lower mean caloric intake (1227 kcal/d) compared with control group children (1323 kcal/d) (adjusted difference, −99.4 kcal [95% CI, −160.7 to −38.0]; corrected P = .003). Intervention group parents used community centers with their children more than control group parents (56.8% in intervention; 44.4% in control) (risk ratio, 1.29 [95% CI, 1.08 to 1.53]; corrected P = .006). CONCLUSIONS AND RELEVANCE A 36-month multicomponent behavioral intervention did not change BMI trajectory among underserved preschool-age children in Nashville, Tennessee, compared with a control program. Whether there would be effectiveness for other types of behavioral interventions or implementation in other cities would require further research

    The MACHO Project 2nd Year LMC Microlensing Results and Dark Matter Implications

    Full text link
    The MACHO Project is searching for galactic dark matter in the form of massive compact halo objects (Machos). Millions of stars in the Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and Galactic bulge are photometrically monitored in an attempt to detect rare gravitational microlensing events caused by otherwise invisible Machos. Analysis of two years of photometry on 8.5 million stars in the LMC reveals 8 candidate microlensing events, far more than the 1\sim1 event expected from lensing by low-mass stars in known galactic populations. From these eight events we estimate the optical depth towards the LMC from events with 2 < \that < 200 days to be \tau_2^{200} \approx 2.9 ^{+1.4}_{-0.9} \ten{-7}. This exceeds the optical depth of 0.5\ten{-7} expected from known stars and is to be compared with an optical depth of 4.7\ten{-7} predicted for a ``standard'' halo composed entirely of Machos. The total mass in this lensing population is \approx 2^{+1.2}_{-0.7} \ten{11} \msun (within 50 kpc from the Galactic center). Event timescales yield a most probable Macho mass of 0.5^{+0.3}_{-0.2}\msun, although this value is quite model dependent.Comment: 10 pages, 6 epsf figures and style file included, 451k, also at http://wwwmacho.mcmaster.ca/Pubs/Pubs.html; To appear in the Proceedings of "Sources and Detection of Dark Matter in the Universe", Santa Monica, CA, Feb., 199

    A Binary Lensing Event Toward the LMC: Observations and Dark Matter Implications

    Get PDF
    The MACHO collaboration has recently analyzed 2.1 years of photometric data for about 8.5 million stars in the Large Magellanic Cloud (LMC). This analysis has revealed 8 candidate microlensing events and a total microlensing optical depth of τmeas=2.9+1.4/0.9×107\tau_{meas} = 2.9 +1.4/-0.9 \times 10^{-7}. This significantly exceeds the number of events (1.1) and the microlensing optical depth predicted from known stellar populations: τback=5.4×108\tau_{back} = 5.4\times 10^{-8}, but it is consistent with models in which about half of the standard dark halo mass is composed of Machos of mass \sim 0.5 \msun. One of these 8 events appears to be a binary lensing event with a caustic crossing that is partially resolved which allows us to estimate the distance to the lenses. If the source star is not a short period binary star, then we show that the lens system is very likely to reside in the LMC. However, if we assume that the optical depth for LMC-LMC lensing is large enough to account for our entire lensing signal, then the binary event does not appear to be consistent with lensing of a single LMC source star by a binary residing in the LMC. Thus, while the binary lens may indeed reside in the LMC, there is no indication that most of the lenses reside in the LMC.Comment: 5 pages, 3 postscript figures included; To appear in the Proceedings of the Dark Matter '96 Conference held in Santa Monica, CA, Feb., 199

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Applying the Behavior Change Technique Taxonomy to Four Multicomponent Childhood Obesity Interventions

    Get PDF
    Applying the Behavior Change Technique Taxonomy has the potential to facilitate identification of effective childhood obesity intervention components. This article evaluates the feasibility of coding Childhood Obesity Prevention and Treatment Consortium interventions and compares reliability between external taxonomy-familiar coders and internal intervention-familiar coders. After training, coder pairs independently coded prespecified portions of intervention materials. An adjudication process was used to explore coding discrepancies. Reliability between internal and external coders was moderate (prevalence and bias-adjusted kappa.38 to.55). Reliability for specific target behaviors varied with substantial agreement for physical activity (.63 to.76) and moderate for dietary intake (.44 to.63). Applying the taxonomy to these interventions was feasible, but agreement was modest. Coding discrepancies highlight the importance of refining coding to capture the complexities of childhood obesity interventions, which often engage multiple recipients (e.g., parents and/or children) and address multiple behaviors (e.g., diet, physical activity, screen time)

    Customer emotions in service failure and recovery encounters

    Get PDF
    Emotions play a significant role in the workplace, and considerable attention has been given to the study of employee emotions. Customers also play a central function in organizations, but much less is known about customer emotions. This chapter reviews the growing literature on customer emotions in employee–customer interfaces with a focus on service failure and recovery encounters, where emotions are heightened. It highlights emerging themes and key findings, addresses the measurement, modeling, and management of customer emotions, and identifies future research streams. Attention is given to emotional contagion, relationships between affective and cognitive processes, customer anger, customer rage, and individual differences

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
    corecore