214 research outputs found

    Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings

    Full text link
    Bioelectrical surface recordings are usually performed by unipolar or bipolar disc electrodes even though they entail the serious disadvantage of having poor spatial resolution. Concentric ring electrodes give improved spatial resolution, although this type of electrode has so far only been implemented in rigid substrates and as they are not adapted to the curvature of the recording surface may provide discomfort to the patient. Moreover, the signals recorded by these electrodes are usually lower in amplitude than conventional disc electrodes. The aim of this work was thus to develop and test a new modular active sensor made up of concentric ring electrodes printed on a flexible substrate by thick-film technology together with a reusable battery-powered signal-conditioning circuit. Simultaneous ECG recording with both flexible and rigid concentric ring electrodes was carried out on ten healthy volunteers at rest and in motion. The results show that flexible concentric ring electrodes not only present lower skin electrode contact impedance and lower baseline wander than rigid electrodes but are also less sensitive to interference and motion artefacts. We believe these electrodes, which allow bioelectric signals to be acquired non-invasively with better spatial resolution than conventional disc electrodes, to be a step forward in the development of new monitoring systems based on Laplacian potential recordings.This research was supported in part by the Ministerio de Ciencia y Tecnologia de Espana (TEC2010-16945) and by the Universitat Politecnica de Valencia (PAID 2009/10-2298). The proof-reading of this paper was funded by the Universitat Politecnica de Valencia, Spain.Prats Boluda, G.; Ye Lin, Y.; García Breijo, E.; Ibáñez Civera, FJ.; Garcia Casado, FJ. (2012). Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings. Measurement Science and Technology. 23(12):1-10. https://doi.org/10.1088/0957-0233/23/12/125703S1102312Malmivuo, J., & Plonsey, R. (1995). BioelectromagnetismPrinciples and Applications of Bioelectric and Biomagnetic Fields. doi:10.1093/acprof:oso/9780195058239.001.0001Gevins, A. (1989). Dynamic functional topography of cognitive tasks. Brain Topography, 2(1-2), 37-56. doi:10.1007/bf01128842Bradshaw, L. A., Wijesinghe, R. S., & Wikswo, Jr., J. P. (2001). Spatial Filter Approach for Comparison of the Forward and Inverse Problems of Electroencephalography and Magnetoencephalography. Annals of Biomedical Engineering, 29(3), 214-226. doi:10.1114/1.1352641Bradshaw, L. A., Richards, W. O., & Wikswo, J. P. (2001). Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity. Medical & Biological Engineering & Computing, 39(1), 35-43. doi:10.1007/bf02345264Garcia-Casado, J., Martinez-de-Juan, J. L., & Ponce, J. L. (2005). Noninvasive Measurement and Analysis of Intestinal Myoelectrical Activity Using Surface Electrodes. IEEE Transactions on Biomedical Engineering, 52(6), 983-991. doi:10.1109/tbme.2005.846730SippensGroenewegen, A., Peeters, H. A. P., Jessurun, E. R., Linnenbank, A. C., Robles de Medina, E. O., Lesh, M. D., & van Hemel, N. M. (1998). Body Surface Mapping During Pacing at Multiple Sites in the Human Atrium. Circulation, 97(4), 369-380. doi:10.1161/01.cir.97.4.369Lian, J., Li, G., Cheng, J., Avitall, B., & He, B. (2002). Body surface Laplacian mapping of atrial depolarization in healthy human subjects. Medical & Biological Engineering & Computing, 40(6), 650-659. doi:10.1007/bf02345304Wu, D., Tsai, H. C., & He, B. (1999). On the Estimation of the Laplacian Electrocardiogram during Ventricular Activation. Annals of Biomedical Engineering, 27(6), 731-745. doi:10.1114/1.224Koka, K., & Besio, W. G. (2007). Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes. Journal of Neuroscience Methods, 165(2), 216-222. doi:10.1016/j.jneumeth.2007.06.007Prats-Boluda, G., Garcia-Casado, J., Martinez-de-Juan, J. L., & Ye-Lin, Y. (2011). Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Medical Engineering & Physics, 33(4), 446-455. doi:10.1016/j.medengphy.2010.11.009He, B., & Cohen, R. J. (1992). Body surface Laplacian mapping of cardiac electrical activity. The American Journal of Cardiology, 70(20), 1617-1620. doi:10.1016/0002-9149(92)90471-aBesio, W., Aakula, R., Koka, K., & Dai, W. (2006). Development of a Tri-polar Concentric Ring Electrode for Acquiring Accurate Laplacian Body Surface Potentials. Annals of Biomedical Engineering, 34(3), 426-435. doi:10.1007/s10439-005-9054-8Ye-Lin, Y., Garcia-Casado, J., Prats-Boluda, G., Ponce, J. L., & Martinez-de-Juan, J. L. (2009). Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity. Physiological Measurement, 30(9), 885-902. doi:10.1088/0967-3334/30/9/002Hjorth, B. (1975). An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalography and Clinical Neurophysiology, 39(5), 526-530. doi:10.1016/0013-4694(75)90056-5Perrin, F., Pernier, J., Bertnard, O., Giard, M. ., & Echallier, J. . (1987). Mapping of scalp potentials by surface spline interpolation. Electroencephalography and Clinical Neurophysiology, 66(1), 75-81. doi:10.1016/0013-4694(87)90141-6Nunez, P. L., & Westdorp, A. F. (1994). The surface laplacian, high resolution EEG and controversies. Brain Topography, 6(3), 221-226. doi:10.1007/bf01187712Srinivasan, R., Nunez, P. L., Tucker, D. M., Silberstein, R. B., & Cadusch, P. J. (1996). Spatial sampling and filtering of EEG with spline Laplacians to estimate cortical potentials. Brain Topography, 8(4), 355-366. doi:10.1007/bf01186911Farina, D., & Cescon, C. (2001). Concentric-ring electrode systems for noninvasive detection of single motor unit activity. IEEE Transactions on Biomedical Engineering, 48(11), 1326-1334. doi:10.1109/10.959328G. Besio, C. C. Lu, P. P. Tarjan, W. (2001). A Feasibility Study for Body Surface Cardiac Propagation Maps of Humans from Laplacian Moments of Activation. Electromagnetics, 21(7-8), 621-632. doi:10.1080/027263401752246243Li, G., Wang, Y., Lin, L., Jiang, W., Wang, L. L., Lu, S. C.-Y., & Besio, W. G. (2005). Active Laplacian electrode for the data-acquisition system of EHG. Journal of Physics: Conference Series, 13, 330-335. doi:10.1088/1742-6596/13/1/077Engel, J., Chen, J., & Liu, C. (2003). Development of polyimide flexible tactile sensor skin. Journal of Micromechanics and Microengineering, 13(3), 359-366. doi:10.1088/0960-1317/13/3/302Papakostas, T. V., Lima, J., & Lowe, M. (s. f.). A large area force sensor for smart skin applications. Proceedings of IEEE Sensors. doi:10.1109/icsens.2002.1037366Stieglitz, T. (2001). Flexible biomedical microdevices with double-sided electrode arrangements for neural applications. Sensors and Actuators A: Physical, 90(3), 203-211. doi:10.1016/s0924-4247(01)00520-9Hamilton, P. S., & Tompkins, W. J. (1986). Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database. IEEE Transactions on Biomedical Engineering, BME-33(12), 1157-1165. doi:10.1109/tbme.1986.325695Besio, W., & Chen, T. (2007). Tripolar Laplacian electrocardiogram and moment of activation isochronal mapping. Physiological Measurement, 28(5), 515-529. doi:10.1088/0967-3334/28/5/006Besio, G., Koka, K., Aakula, R., & Weizhong Dai. (2006). Tri-polar concentric ring electrode development for Laplacian electroencephalography. IEEE Transactions on Biomedical Engineering, 53(5), 926-933. doi:10.1109/tbme.2005.863887Setti, L., Fraleoni-Morgera, A., Ballarin, B., Filippini, A., Frascaro, D., & Piana, C. (2005). An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosensors and Bioelectronics, 20(10), 2019-2026. doi:10.1016/j.bios.2004.09.022Reddy, A. S. G., Narakathu, B. B., Atashbar, M. Z., Rebros, M., Rebrosova, E., & Joyce, M. K. (2011). Gravure Printed Electrochemical Biosensor. Procedia Engineering, 25, 956-959. doi:10.1016/j.proeng.2011.12.235Gruetzmann, A., Hansen, S., & Müller, J. (2007). Novel dry electrodes for ECG monitoring. Physiological Measurement, 28(11), 1375-1390. doi:10.1088/0967-3334/28/11/005LI, G., LIAN, J., SALLA, P., CHENG, J., RAMACHANDRA, I., SHAH, P., … HE, B. (2003). Body Surface Laplacian Electrocardiogram of Ventricular Depolarization in Normal Human Subjects. Journal of Cardiovascular Electrophysiology, 14(1), 16-27. doi:10.1046/j.1540-8167.2003.02199.

    Acceptability of a novel levofloxacin dispersible tablet formulation in young children exposed to multidrug-resistant tuberculosis

    Get PDF
    Levofloxacin is used for the treatment and prevention of multidrug-resistant tuberculosis in children, but current adult formulations are poorly palatable. A questionnaire administered to caregivers of 27 children taking a novel 100 mg dispersible taste-masked levofloxacin tablet found the new formulation to be more palatable (69%) and easier to prepare (81%) than the adult formulation. This formulation may assist children to better adhere to anti-tuberculous therapy

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Low Dose Aerosol Fitness at the Innate Phase of Murine Infection Better Predicts Virulence amongst Clinical Strains of Mycobacterium tuberculosis

    Get PDF
    Background: Evaluation of a quick and easy model to determine the intrinsic ability of clinical strains to generate active TB has been set by assuming that this is linked to the fitness of Mycobacterium tuberculosis strain at the innate phase of the infection. Thus, the higher the bacillary load, the greater the possibility of inducting liquefaction, and thus active TB, once the adaptive response is set. Methodology/Principal Findings: The virulence of seven clinical Mycobacterium tuberculosis strains isolated in Spain was tested by determining the bacillary concentration in the spleen and lung of mice at weeks 0, 1 and 2 after intravenous (IV) inoculation of 10 4 CFU, and by determining the growth in vitro until the stationary phase had been reached. Cord distribution automated analysis showed two clear patterns related to the high and low fitness in the lung after IV infection. This pattern was not seen in the in vitro fitness tests, which clearly favored the reference strain (H37Rv). Subsequent determination using a more physiological low-dose aerosol (AER) inoculation with 10 2 CFU showed a third pattern in which the three best values coincided with the highest dissemination capacity according to epidemiological data. Conclusions/Significance: The fitness obtained after low dose aerosol administration in the presence of the innate immune response is the most predictive factor for determining the virulence of clinical strains. This gives support to a mechanism o

    SARS-CoV-2 Catalonia contact tracing program : evaluation of key performance indicators

    Get PDF
    Background: Guidance on SARS-CoV-2 contact tracing indicators have been recently revised by international public health agencies. The aim of the study is to describe and analyse contact tracing indicators based on Catalonia's (Spain) real data and proposing to update them according to recommendations. Methods: Retrospective cohort analysis including Catalonia's contact tracing dataset from 20 May until 31 December 2020. Descriptive statistics are performed including sociodemographic stratification by age, and differences are assessed over the study period. Results: We analysed 923,072 contacts from 301,522 SARS-CoV-2 cases with identified contacts (67.1% contact tracing coverage). The average number of contacts per case was 4.6 (median 3, range 1-243). A total of 403,377 contacts accepted follow-up through three phone calls over a 14-day quarantine period (84.5% of contacts requiring follow-up). The percentage of new cases declared as contacts 14 days prior to diagnosis evolved from 33.9% in May to 57.9% in November. All indicators significantly improved towards the target over time (p < 0.05 for all four indicators). Conclusions: Catalonia's SARS-CoV-2 contact tracing indicators improved over time despite challenging context. The critical revision of the indicator's framework aims to provide essential information in control policies, new indicators proposed will improve system delay's follow-up. The study provides information on COVID-19 indicators framework experience from country's real data, allowing to improve monitoring tools in 2021-2022. With the SARS-CoV-2 pandemic being so harmful to health systems and globally, is important to analyse and share contact tracing data with the scientific community

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment

    Full text link
    [EN] As one of the main aims of obstetrics is to be able to detect imminent delivery in patients with threatened preterm labor, the techniques currently used in clinical practice have serious limitations in this respect. The electrohysterogram (EHG) has now emerged as an alternative technique, providing relevant information about labor onset when recorded in controlled checkups without administration of tocolytic drugs. The studies published to date mainly focus on EHG-burst analysis and, to a lesser extent, on whole EHG window analysis. The study described here assessed the ability of EHG signals to discriminate imminent labor (The ability of EHG recordings to predict imminent labor (<7days) was analyzed in preterm threatened patients undergoing tocolytic therapies by means of EHG-burst and whole EHG window analysis. The non-linear features were found to have better performance than the temporal and spectral parameters in separating women who delivered in less than 7days from those who did not.Mas-Cabo, J.; Prats-Boluda, G.; Perales Marín, AJ.; Garcia-Casado, J.; Alberola Rubio, J.; Ye Lin, Y. (2019). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing. 57:401-411. https://doi.org/10.1007/s11517-018-1888-yS40141157Aboy M, Cuesta-Frau D, Austin D, Micó-Tormos P (2007) Characterization of sample entropy in the context of biomedical signal analysis. Conf Proc IEEE Eng Med Biol Soc:5942–5945. https://doi.org/10.1109/IEMBS.2007.4353701Aboy M, Hornero R, Abásolo D, Álvarez D (2006) Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans Biomed Eng 53:2282–2288. https://doi.org/10.1109/TBME.2006.883696Chkeir A, Fleury MJ, Karlsson B, Hassan M, Marque C (2013) Patterns of electrical activity synchronization in the pregnant rat uterus. Biomed 3:140–144. https://doi.org/10.1016/j.biomed.2013.04.007Crandon AJ (1979) Maternal anxiety and neonatal wellbeing. J Psychosom Res 23:113–115. https://doi.org/10.1016/0022-3999(79)90015-1Devedeux D, Marque C, Mansour S, Germain G, Duchêne J (1993) Uterine electromyography: a critical review. Am J Obstet Gynecol 169:1636–1653. https://doi.org/10.1016/0002-9378(93)90456-SFele-Žorž G, Kavšek G, Novak-Antolič Ž, Jager F (2008) A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med Biol Eng Comput 46:911–922. https://doi.org/10.1007/s11517-008-0350-yFergus P, Cheung P, Hussain A, al-Jumeily D, Dobbins C, Iram S (2013) Prediction of preterm deliveries from EHG signals using machine learning. PLoS One 8:e77154. https://doi.org/10.1371/journal.pone.0077154Garfield RE, Maner WL (2006) Biophysical methods of prediction and prevention of preterm labor: uterine electromyography and cervical light-induced fluorescence—new obstetrical diagnostic techniques. In: Preterm Birth pp 131–144Garfield RE, Maner WL (2007) Physiology and electrical activity of uterine contractions. Semin Cell Dev Biol 18:289–295. https://doi.org/10.1016/j.semcdb.2007.05.004Garfield RE, Maner WL, MacKay LB et al (2005) Comparing uterine electromyography activity of antepartum patients versus term labor patients. Am J Obstet Gynecol 193:23–29. https://doi.org/10.1016/j.ajog.2005.01.050Goldenberg RL, Culhane JF, Iams JD, Romero R (2008) Epidemiology and causes of preterm birth. Lancet 371:75–84. https://doi.org/10.1016/S0140-6736(08)60074-4American College of Obstetricians and Gynecologists and Committee on Practice Bulletins— Obstetrics (2012) Practice bulletin no. 127. Obstet Gynecol 119(6):1308–1317.Hadar E, Biron-Shental T, Gavish O, Raban O, Yogev Y (2015) A comparison between electrical uterine monitor, tocodynamometer and intra uterine pressure catheter for uterine activity in labor. J Matern Neonatal Med 28:1367–1374. https://doi.org/10.3109/14767058.2014.954539Hans P, Dewandre P, Brichant JF, Bonhomme V (2005) Comparative effects of ketamine on Bispectral Index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia. Br J Anaesth 94:336–340. https://doi.org/10.1093/bja/aei047Hassan M, Terrien J, Marque C, Karlsson B (2011) Comparison between approximate entropy, correntropy and time reversibility: application to uterine electromyogram signals. Med Eng Phys 33:980–986. https://doi.org/10.1016/j.medengphy.2011.03.010Hassan M, Terrien J, Muszynski C et al (2013) Better pregnancy monitoring using nonlinear correlation analysis of external uterine electromyography. IEEE Trans Biomed Eng 60:1160–1166. https://doi.org/10.1109/TBME.2012.2229279Horoba K, Jezewski J, Matonia A, Wrobel J, Czabanski R, Jezewski M (2016) Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals. Biocybern Biomed Eng 36:574–583. https://doi.org/10.1016/j.bbe.2016.06.004Lawn JE, Wilczynska-Ketende K, Cousens SN (2006) Estimating the causes of 4 million neonatal deaths in the year 2000. Int J Epidemiol 35:706–718. https://doi.org/10.1093/ije/dyl043Lemancewicz A, Borowska M, Kuć P, Jasińska E, Laudański P, Laudański T, Oczeretko E (2016) Early diagnosis of threatened premature labor by electrohysterographic recordings—the use of digital signal processing. Biocybern Biomed Eng 36:302–307. https://doi.org/10.1016/j.bbe.2015.11.005M L WLM, LR C (2012) Noninvasive uterine electromyography for prediction of preterm delivery. Am J Obstet Gynecol 204:1–20. https://doi.org/10.1016/j.ajog.2010.09.024.NoninvasiveManer WL, Garfield RE (2007) Identification of human term and preterm labor using artificial neural networks on uterine electromyography data. Ann Biomed Eng 35:465–473. https://doi.org/10.1007/s10439-006-9248-8Maner WL, Garfield RE, Maul H, Olson G, Saade G (2003) Predicting term and preterm delivery with transabdominal uterine electromyography. Obstet Gynecol 101:1254–1260. https://doi.org/10.1016/S0029-7844(03)00341-7Marque C, Gondry J (1999) Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Trans Biomed Eng 46:1222–1229Maul H, Maner WL, Olson G, Saade GR, Garfield RE (2004) Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. J Matern Fetal Neonatal Med 15:297–301Mischi M, Chen C, Ignatenko T, de Lau H, Ding B, Oei SGG, Rabotti C (2018) Dedicated entropy measures for early assessment of pregnancy progression from single-channel electrohysterography. IEEE Trans Biomed Eng 65:875–884. https://doi.org/10.1109/TBME.2017.2723933Most O, Langer O, Kerner R, Ben David G, Calderon I (2008) Can myometrial electrical activity identify patients in preterm labor? Am J Obstet Gynecol 199:378. https://doi.org/10.1016/j.ajog.2008.08.003Petrou S (2005) The economic consequences of preterm birth during the first 10 years of life. BJOG 112:10–15. https://doi.org/10.1111/j.1471-0528.2005.00577.xRabotti C, Sammali F, Kuijsters N, et al (2015) Analysis of uterine activity in nonpregnant women by electrohysterography: a feasibility study. In: Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS pp 5916–5919Schlembach D, Maner WL, Garfield RE, Maul H (2009) Monitoring the progress of pregnancy and labor using electromyography. Eur J Obstet Gynecol Reprod Biol 144:2–8. https://doi.org/10.1016/j.ejogrb.2009.02.016Sikora J, Matonia A, Czabański R et al (2011) Recognition of premature threatening labour symptoms from bioelectrical uterine activity signals. Arch Perinat Med 17:97–103Vinken MPGC, Rabotti C, Mischi M, van Laar JOEH, Oei SG (2010) Nifedipine-induced changes in the electrohysterogram of preterm contractions: feasibility in clinical practice. Obstet Gynecol Int 2010:325635. https://doi.org/10.1155/2010/325635Vrhovec J, Lebar AM (2012) An uterine electromyographic activity as a measure of labor progression. Appl EMG Clin Sport Med 243–268. doi: https://doi.org/10.5772/25526Vrhovec J, Macek-Lebar A, Rudel D (2007) Evaluating uterine electrohysterogram with entropy. 11th Mediterr Conf Med Biomed Eng Comput 144–147. https://doi.org/10.1007/978-3-540-73044-6_36Ye-Lin Y, Bueno-Barrachina JM, Prats-boluda G, Rodriguez de Sanabria R, Garcia-Casado J (2017) Wireless sensor node for non-invasive high precision electrocardiographic signal acquisition based on a multi-ring electrode. Measurement 97:195–202. https://doi.org/10.1016/J.MEASUREMENT.2016.11.009Ye-Lin Y, Garcia-Casado J, Prats-Boluda G, Alberola-Rubio J, Perales A (2014) Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions. Comput Math Methods Med 2014:1–11. https://doi.org/10.1155/2014/470786Zhang XS, Roy RJ, Jensen EW (2001) EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans Biomed Eng 48:1424–1433. https://doi.org/10.1109/10.96660

    Clinical standards for drug-susceptible TB in children and adolescents.

    Get PDF
    BACKGROUND: These clinical standards aim to provide guidance for diagnosis, treatment, and management of drug-susceptible TB in children and adolescents.METHODS: Fifty-two global experts in paediatric TB participated in a Delphi consensus process. After eight rounds of revisions, 51/52 (98%) participants endorsed the final document.RESULTS: Eight standards were identified: Standard 1, Age and developmental stage are critical considerations in the assessment and management of TB; Standard 2, Children and adolescents with symptoms and signs of TB disease should undergo prompt evaluation, and diagnosis and treatment initiation should not depend on microbiological confirmation; Standard 3, Treatment initiation is particularly urgent in children and adolescents with presumptive TB meningitis and disseminated (miliary) TB; Standard 4, Children and adolescents should be treated with an appropriate weight-based regimen; Standard 5, Treating TB infection (TBI) is important to prevent disease; Standard 6, Children and adolescents should receive home-based/community-based treatment support whenever possible; Standard 7, Children, adolescents, and their families should be provided age-appropriate support to optimise engagement in care and clinical outcomes; and Standard 8, Case reporting and contact tracing should be conducted for each child and adolescent.CONCLUSION: These consensus-based clinical standards, which should be adapted to local contexts, will improve the care of children and adolescents affected by TB

    Clinical standards for drug-susceptible TB in children and adolescents

    Get PDF
    BACKGROUND: These clinical standards aim to provide guidance for diagnosis, treatment, and management of drug-susceptible TB in children and adolescents. METHODS: Fifty-two global experts in paediatric TB participated in a Delphi consensus process. After eight rounds of revisions, 51/52 (98%) participants endorsed the final document. RESULTS: Eight standards were identified: Standard 1, Age and developmental stage are critical considerations in the assessment and management of TB; Standard 2, Children and adolescents with symptoms and signs of TB disease should undergo prompt evaluation, and diagnosis and treatment initiation should not depend on microbiological confirmation; Standard 3, Treatment initiation is particularly urgent in children and adolescents with presumptive TB meningitis and disseminated (miliary) TB; Standard 4, Children and adolescents should be treated with an appropriate weight-based regimen; Standard 5, Treating TB infection (TBI) is important to prevent disease; Standard 6, Children and adolescents should receive home-based/community-based treatment support whenever possible; Standard 7, Children, adolescents, and their families should be provided age-appropriate support to optimise engagement in care and clinical outcomes; and Standard 8, Case reporting and contact tracing should be conducted for each child and adolescent. CONCLUSION: These consensus-based clinical standards, which should be adapted to local contexts, will improve the care of children and adolescents affected by TB.National Institutes of HealthRevisión por pare
    corecore