527 research outputs found

    Global warming and malaria: knowing the horse before hitching the cart

    Get PDF
    Speculations on the potential impact of climate change on human health frequently focus on malaria. Predictions are common that in the coming decades, tens – even hundreds – of millions more cases will occur in regions where the disease is already present, and that transmission will extend to higher latitudes and altitudes. Such predictions, sometimes supported by simple models, are persuasive because they are intuitive, but they sidestep factors that are key to the transmission and epidemiology of the disease: the ecology and behaviour of both humans and vectors, and the immunity of the human population. A holistic view of the natural history of the disease, in the context of these factors and in the precise setting where it is transmitted, is the only valid starting point for assessing the likely significance of future changes in climate

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.

    Evaluation and optimization of PCR primers for selective and quantitative detection of marine ANME subclusters involved in sulfate-dependent anaerobic methane oxidation

    Get PDF
    Since the discovery that anaerobic methanotrophic archaea (ANME) are involved in the anaerobic oxidation of methane coupled to sulfate reduction in marine sediments, different primers and probes specifically targeting the 16S rRNA gene of these archaea have been developed. Microbial investigation of the different ANME subtypes (ANME-1; ANME-2a, b, and c; and ANME-3) was mainly done in sediments where specific subtypes of ANME were highly enriched and methanogenic cell numbers were low. In different sediments with higher archaeal diversity and abundance, it is important that primers and probes targeting different ANME subtypes are very specific and do not detect other ANME subtypes or methanogens that are also present. In this study, primers and probes that were regularly used in AOM studies were tested in silico on coverage and specificity. Most of the previously developed primers and probes were not specific for the ANME subtypes, thereby not reflecting the actual ANME population in complex samples. Selected primers that showed good coverage and high specificity for the subclades ANME-1, ANME-2a/b, and ANME-2c were thoroughly validated using quantitative polymerase chain reaction (qPCR). From these qPCR tests, only certain combinations seemed suitable for selective amplification. After optimization of these primer sets, we obtained valid primer combinations for the selective detection and quantification of ANME-1, ANME-2a/b, and ANME-2c in samples where different ANME subtypes and possibly methanogens could be present. As a result of this work, we propose a standard workflow to facilitate selection of suitable primers for qPCR experiments on novel environmental samples.This research is supported by the Dutch Technology Foundation STW (project 10711), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Research of AJMS is supported by ERC grant (project 323009). Research of PHATand AJMS is supported by the SIAM Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO).info:eu-repo/semantics/publishedVersio

    Metabolism of multiple glycosaminoglycans by <i>Bacteroides thetaiotaomicron</i> is orchestrated by a versatile core genetic locus

    Get PDF
    The human gut microbiota (HGM), which is critical to human health, utilises complex glycans as its major carbon source. Glycosaminoglycans represent an important, high priority, nutrient source for the HGM. Pathways for the metabolism of various glycosaminoglycan substrates remain ill-defined. Here we perform a biochemical, genetic and structural dissection of the genetic loci that orchestrates glycosaminoglycan metabolism in the organism Bacteroides thetaiotaomicron. Here, we report: the discovery of two previously unknown surface glycan binding proteins which facilitate glycosaminoglycan import into the periplasm; distinct kinetic and genetic specificities of various periplasmic lyases which dictate glycosaminoglycan metabolic pathways; understanding of endo sulfatase activity questioning the paradigm of how the β€˜sulfation problem’ is handled by the HGM; and 3D crystal structures of the polysaccharide utilisation loci encoded sulfatases. Together with comparative genomic studies, our study fills major gaps in our knowledge of glycosaminoglycan metabolism by the HGM

    Implementing health research through academic and clinical partnerships : a realistic evaluation of the Collaborations for Leadership in Applied Health Research and Care (CLAHRC)

    Get PDF
    Background: The English National Health Service has made a major investment in nine partnerships between higher education institutions and local health services called Collaborations for Leadership in Applied Health Research and Care (CLAHRC). They have been funded to increase capacity and capability to produce and implement research through sustained interactions between academics and health services. CLAHRCs provide a natural β€˜test bed’ for exploring questions about research implementation within a partnership model of delivery. This protocol describes an externally funded evaluation that focuses on implementation mechanisms and processes within three CLAHRCs. It seeks to uncover what works, for whom, how, and in what circumstances. Design and methods: This study is a longitudinal three-phase, multi-method realistic evaluation, which deliberately aims to explore the boundaries around knowledge use in context. The evaluation funder wishes to see it conducted for the process of learning, not for judging performance. The study is underpinned by a conceptual framework that combines the Promoting Action on Research Implementation in Health Services and Knowledge to Action frameworks to reflect the complexities of implementation. Three participating CLARHCS will provide indepth comparative case studies of research implementation using multiple data collection methods including interviews, observation, documents, and publicly available data to test and refine hypotheses over four rounds of data collection. We will test the wider applicability of emerging findings with a wider community using an interpretative forum. Discussion: The idea that collaboration between academics and services might lead to more applicable health research that is actually used in practice is theoretically and intuitively appealing; however the evidence for it is limited. Our evaluation is designed to capture the processes and impacts of collaborative approaches for implementing research, and therefore should contribute to the evidence base about an increasingly popular (e.g., Mode two, integrated knowledge transfer, interactive research), but poorly understood approach to knowledge translation. Additionally we hope to develop approaches for evaluating implementation processes and impacts particularly with respect to integrated stakeholder involvement

    Volatility forecasting in the Chinese commodity futures market with intraday data

    Get PDF
    Given the unique institutional regulations in the Chinese commodity futures market as well as the characteristics of the data it generates, we utilize contracts with three months to delivery, the most liquid contract series, to systematically explore volatility forecasting for aluminum, copper, fuel oil, and sugar at the daily and three intraday sampling frequencies. We adopt popular volatility models in the literature and assess the forecasts obtained via these models against alternative proxies for the true volatility. Our results suggest that the long memory property is an essential feature in the commodity futures volatility dynamics and that the ARFIMA model consistently produces the best forecasts or forecasts not inferior to the best in statistical terms

    Stability of gene contributions and identification of outliers in multivariate analysis of microarray data

    Get PDF
    BACKGROUND: Multivariate ordination methods are powerful tools for the exploration of complex data structures present in microarray data. These methods have several advantages compared to common gene-by-gene approaches. However, due to their exploratory nature, multivariate ordination methods do not allow direct statistical testing of the stability of genes. RESULTS: In this study, we developed a computationally efficient algorithm for: i) the assessment of the significance of gene contributions and ii) the identification of sample outliers in multivariate analysis of microarray data. The approach is based on the use of resampling methods including bootstrapping and jackknifing. A statistical package of R functions was developed. This package includes tools for both inferring the statistical significance of gene contributions and identifying outliers among samples. CONCLUSION: The methodology was successfully applied to three published data sets with varying levels of signal intensities. Its relevance was compared with alternative methods. Overall, it proved to be particularly effective for the evaluation of the stability of microarray data

    Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review

    Get PDF

    Vocal Communications and the Maintenance of Population Specific Songs in a Contact Zone

    Get PDF
    Bird song has been hypothesized to play a role in several important aspects of the biology of songbirds, including the generation of taxonomic diversity by speciation; however, the role that song plays in speciation within this group may be dependent upon the ability of populations to maintain population specific songs or calls in the face of gene flow and external cultural influences. Here, in an exploratory study, we construct a spatially explicit model of population movement to examine the consequences of secondary contact of populations singing distinct songs. We concentrate on two broad questions: 1) will population specific songs be maintained in a contact zone or will they be replaced by shared song, and 2) what spatial patterns in the distribution of songs may result from contact? We examine the effects of multiple factors including song-based mating preferences and movement probabilities, oblique versus paternal learning of song, and both cultural and genetic mutations. We find a variety of conditions under which population specific songs can be maintained, particularly when females have preferences for their population specific songs, and we document many distinct patterns of song distribution within the contact zone, including clines, banding, and mosaics

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore