2,117 research outputs found

    Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models.

    Get PDF
    PMCID: PMC3733718This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Evolutionary change is a characteristic of living organisms and forms one of the ways in which species adapt to changed conditions. However, most ecological models do not incorporate this ubiquitous phenomenon. We have developed a model that takes a 'phenotypic gambit' approach and focuses on changes in the frequency of phenotypes (which differ in timing of breeding and fecundity) within a population, using, as an example, seasonal breeding. Fitness per phenotype calculated as the individual's contribution to population growth on an annual basis coincide with the population dynamics per phenotype. Simplified model variants were explored to examine whether the complexity included in the model is justified. Outputs from the spatially implicit model underestimated the number of individuals across all phenotypes. When no phenotype transitions are included (i.e. offspring always inherit their parent's phenotype) numbers of all individuals are always underestimated. We conclude that by using a phenotypic gambit approach evolutionary dynamics can be incorporated into individual based models, and that all that is required is an understanding of the probability of offspring inheriting the parental phenotype

    A Step Forward in Molecular Diagnostics of Lyssaviruses – Results of a Ring Trial among European Laboratories

    Get PDF
    Rabies is a lethal and notifiable zoonotic disease for which diagnostics have to meet the highest standards. In recent years, an evolution was especially seen in molecular diagnostics with a wide variety of different detection methods published. Therefore, a first international ring trial specifically designed on the use of reverse transcription polymerase chain reaction (RT-PCR) for detection of lyssavirus genomic RNA was organized. The trial focussed on assessment and comparison of the performance of conventional and real-time assays. In total, 16 European laboratories participated. All participants were asked to investigate a panel of defined lyssavirus RNAs, consisting of Rabies virus (RABV) and European bat lyssavirus 1 and 2 (EBLV-1 and -2) RNA samples, with systems available in their laboratory. The ring trial allowed the important conclusion that conventional RT-PCR assays were really robust assays tested with a high concordance between different laboratories and assays. The real-time RT-PCR system by Wakeley et al. (2005) in combination with an intercalating dye, and the combined version by Hoffmann and co-workers (2010) showed good sensitivity for the detection of all RABV samples included in this test panel. Furthermore, all used EBLV-specific assays, real-time RT-PCRs as well as conventional RT-PCR systems, were shown to be suitable for a reliable detection of EBLVs. It has to be mentioned that differences were seen in the performance between both the individual RT-PCR systems and the laboratories. Laboratories which used more than one molecular assay for testing the sample panel always concluded a correct sample result. Due to the markedly high genetic diversity of lyssaviruses, the application of different assays in diagnostics is needed to achieve a maximum of diagnostic accuracy. To improve the knowledge about the diagnostic performance proficiency testing at an international level is recommended before using lyssavirus molecular diagnostics e.g. for confirmatory testing

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    A Systematic Review of Mosquito Coils and Passive Emanators: Defining Recommendations for Spatial Repellency Testing Methodologies.

    Get PDF
    Mosquito coils, vaporizer mats and emanators confer protection against mosquito bites through the spatial action of emanated vapor or airborne pyrethroid particles. These products dominate the pest control market; therefore, it is vital to characterize mosquito responses elicited by the chemical actives and their potential for disease prevention. The aim of this review was to determine effects of mosquito coils and emanators on mosquito responses that reduce human-vector contact and to propose scientific consensus on terminologies and methodologies used for evaluation of product formats that could contain spatial chemical actives, including indoor residual spraying (IRS), long lasting insecticide treated nets (LLINs) and insecticide treated materials (ITMs). PubMed, (National Centre for Biotechnology Information (NCBI), U.S. National Library of Medicine, NIH), MEDLINE, LILAC, Cochrane library, IBECS and Armed Forces Pest Management Board Literature Retrieval System search engines were used to identify studies of pyrethroid based coils and emanators with key-words "Mosquito coils" "Mosquito emanators" and "Spatial repellents". It was concluded that there is need to improve statistical reporting of studies, and reach consensus in the methodologies and terminologies used through standardized testing guidelines. Despite differing evaluation methodologies, data showed that coils and emanators induce mortality, deterrence, repellency as well as reduce the ability of mosquitoes to feed on humans. Available data on efficacy outdoors, dose-response relationships and effective distance of coils and emanators is inadequate for developing a target product profile (TPP), which will be required for such chemicals before optimized implementation can occur for maximum benefits in disease control

    How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group?

    Get PDF
    This work was financially support by a Marie Curie Initial Training Network grant, “Understanding the evolutionary origin of biological diversity” (ITN-2008–213780 SPECIATION), grants from the Academy of Finland to A.H. (project 132619) and M.K. (projects 268214 and 272927), a grant from NERC, UK to M.G.R. (grant NE/J020818/1), and NERC, UK PhD studentship to D.J.P. (NE/I528634/1).For many organisms the ability to cold acclimate with the onset of seasonal cold has major implications for their fitness. In insects, where this ability is widespread, the physiological changes associated with increased cold tolerance have been well studied. Despite this, little work has been done to trace changes in gene expression during cold acclimation that lead to an increase in cold tolerance. We used an RNA-Seq approach to investigate this in two species of the Drosophila virilis group. We found that the majority of genes that are differentially expressed during cold acclimation differ between the two species. Despite this, the biological processes associated with the differentially expressed genes were broadly similar in the two species. These included: metabolism, cell membrane composition, and circadian rhythms, which are largely consistent with previous work on cold acclimation/cold tolerance. In addition, we also found evidence of the involvement of the rhodopsin pathway in cold acclimation, a pathway that has been recently linked to thermotaxis. Interestingly, we found no evidence of differential expression of stress genes implying that long-term cold acclimation and short-term stress response may have a different physiological basis.PostprintPeer reviewe

    PP2A/B55 and Fcp1 regulate Greatwall and Ensa desphorylation during mitotic exit

    Get PDF
    Entry into mitosis is triggered by activation of Cdk1 and inactivation of its counteracting phosphatase PP2A/B55. Greatwall kinase inactivates PP2A/B55 via its substrates Ensa and ARPP19. Both Greatwall and Ensa/ARPP19 are regulated by phosphorylation, but the dynamic regulation of Greatwall activity and the phosphatases that control Greatwall kinase and its substrates are poorly understood. To address these questions we applied a combination of mathematical modelling and experiments using phospho-specific antibodies to monitor Greatwall, Ensa/ARPP19 and Cdk substrate phosphorylation during mitotic entry and exit. We demonstrate that PP2A/B55 is required for Gwl dephosphorylation at the essential Cdk site Thr194. Ensa/ARPP19 dephosphorylation is mediated by the RNA Polymerase II carboxy terminal domain phosphatase Fcp1. Surprisingly, neither Fcp1 nor PP2A appear to essential to dephosphorylate the bulk of mitotic Cdk1 substrates following Cdk1 inhibition. Taken together our results suggest a hierarchy of phosphatases coordinating Greatwall, Ensa/ARPP19 and Cdk substrate dephosphorylation during mitotic exit

    A CLINICAL STUDY OF INHALANT ANAESTHESIA IN DOGS

    Get PDF
    A clinical trial was undertaken using three different inhalant anaesthetic agents and one intravenous anaesthetic agent in dogs undergoing routine desexing surgery. Healthy adult dogs undergoing either ovariohysterectomy or castration were assessed as to their demeanour, with the more excitable dogs being placed in groups receiving premedication with acepromazine and morphine. All dogs were then randomly assigned an anaesthetic agent for induction of general anaesthesia. The agents were the inhalants halothane, isoflurane and sevoflurane, and the intravenous agent propofol. Inhalant inductions were undertaken using a tight fitting mask attached to a standard anaesthetic machine with a rebreathing circuit, with the maximum dose of inhalant available from a standard vaporiser. Propofol inductions were undertaken via intravenous catheter. Dogs induced with propofol were randomly assigned one of the three inhalant agents for maintenance. Those induced by inhalant agent were maintained using the same agent. The surgical procedure was undertaken in standard fashion, as was recovery from anaesthesia. All dogs received the non-steroidal anti-inflammatory agent meloxicam. Data collection was divided into three stages: induction, maintenance, and recovery from anaesthesia. Variables measured at induction of anaesthesia were time to intubation, number of intubation attempts, tolerance of mask, quality of induction and quality of transfer to the maintenance stage. Standard variables for monitoring of anaesthesia were recorded throughout the maintenance of anaesthesia. Variables measured at recovery were time to righting, time to standing and quality of recovery. The mean time to intubation when using the newer inhalant sevoflurane (196.2 ± 14.8sec, mean ± SE) was not significantly different to that for halothane (221.4 ± 14.0sec) or isoflurane (172.4 ± 15.0sec). Time to intubation with isoflurane was significantly faster than with halothane. Mean time to intubation with propofol (85.4 ± 7.7sec) was significantly faster than that for any of the three inhalants. Choice of inhalant had no effect on quality of induction. The use of premedication significantly improved the quality of induction. The use of propofol for induction likewise significantly improved the quality of induction. Standard cardiorespiratory variables measured during the maintenance phase of anaesthesia remained within normal clinical ranges for all three inhalants, and were therefore not further analysed. Choice of inhalant agent had no significant effect on the time to righting or standing in recovery. The use of propofol for induction had no effect on these variables. Animals placed in groups receiving premedication had significantly longer times to righting and standing. The oesophageal temperature at the end of the procedure had a significant effect on times to righting and standing, with lower temperatures contributing to slower recoveries. Independent of procedure time, male dogs had shorter times to righting than female dogs

    Temperature-Dependent Modulation of Chromosome Segregation in msh4 Mutants of Budding Yeast

    Get PDF
    BACKGROUND:In many organisms, homologous chromosomes rely upon recombination-mediated linkages, termed crossovers, to promote their accurate segregation at meiosis I. In budding yeast, the evolutionarily conserved mismatch-repair paralogues, Msh4 and Msh5, promote crossover formation in conjunction with several other proteins, collectively termed the Synapsis Initiation Complex (SIC) proteins or 'ZMM's (Zip1-Zip2-Zip3-Zip4-Spo16, Msh4-Msh5, Mer3). zmm mutants show decreased levels of crossovers and increased chromosome missegregation, which is thought to cause decreased spore viability. PRINCIPAL FINDINGS:In contrast to other ZMM mutants, msh4 and msh5 mutants show improved spore viability and chromosome segregation in response to elevated temperature (23 degrees C versus 33 degrees C). Crossover frequencies in the population of viable spores in msh4 and msh5 mutants are similar at both temperatures, suggesting that temperature-mediated chromosome segregation does not occur by increasing crossover frequencies. Furthermore, meiotic progression defects at elevated temperature do not select for a subpopulation of cells with improved segregation. Instead, another ZMM protein, Zip1, is important for the temperature-dependent improvement in spore viability. CONCLUSIONS:Our data demonstrate interactions between genetic (zmm status) and environmental factors in determining chromosome segregation

    Genetic structure of Plasmodium falciparum field isolates in eastern and north-eastern India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular techniques have facilitated the studies on genetic diversity of <it>Plasmodium </it>species particularly from field isolates collected directly from patients. The <it>msp-1 </it>and <it>msp-2 </it>are highly polymorphic markers and the large allelic polymorphism has been reported in the block 2 of the <it>msp-1 </it>gene and the central repetitive domain (block3) of the <it>msp-2 </it>gene. Families differing in nucleotide sequences and in number of repetitive sequences (length variation) were used for genotyping purposes. As limited reports are available on the genetic diversity existing among <it>Plasmodium falciparum </it>population of India, this report evaluates the extent of genetic diversity in the field isolates of <it>P. falciparum </it>in eastern and north-eastern regions of India.</p> <p>Methods</p> <p>A study was designed to assess the diversity of <it>msp-1 </it>and <it>msp-2 </it>among the field isolates from India using allele specific nested PCR assays and sequence analysis. Field isolates were collected from five sites distributed in three states namely, Assam, West Bengal and Orissa.</p> <p>Results</p> <p><it>P. falciparum </it>isolates of the study sites are highly diverse in respect of length as well as sequence motifs with prevalence of all the reported allelic families of <it>msp-1 </it>and <it>msp-2</it>. Prevalence of identical allelic composition as well as high level of sequence identity of alleles suggest a considerable amount of gene flow between the <it>P. falciparum </it>populations of different states. A comparatively higher proportion of multiclonal isolates as well as multiplicity of infection (MOI) was observed among isolates of highly malarious districts Karbi Anglong (Assam) and Sundergarh (Orissa). In all the five sites, R033 family of <it>msp-1 </it>was observed to be monomorphic with an allele size of 150/160 bp. The observed 80–90% sequence identity of Indian isolates with data of other regions suggests that Indian <it>P. falciparum </it>population is a mixture of different strains.</p> <p>Conclusion</p> <p>The present study shows that the field isolates of eastern and north-eastern regions of India are highly diverse in respect of <it>msp-1 </it>(block 2) and <it>msp-2 </it>(central repeat region, block 3). As expected Indian isolates present a picture of diversity closer to southeast Asia, Papua New Guinea and Latin American countries, regions with low to meso-endemicity of malaria in comparison to African regions of hyper- to holo-endemicity.</p
    corecore