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Integrating Evolution into Ecological Modelling:
Accommodating Phenotypic Changes in Agent Based
Models
Aristides Moustakas*, Matthew R. Evans

School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom

Abstract

Evolutionary change is a characteristic of living organisms and forms one of the ways in which species adapt to
changed conditions. However, most ecological models do not incorporate this ubiquitous phenomenon. We have
developed a model that takes a ‘phenotypic gambit’ approach and focuses on changes in the frequency of
phenotypes (which differ in timing of breeding and fecundity) within a population, using, as an example, seasonal
breeding. Fitness per phenotype calculated as the individual’s contribution to population growth on an annual basis
coincide with the population dynamics per phenotype. Simplified model variants were explored to examine whether
the complexity included in the model is justified. Outputs from the spatially implicit model underestimated the number
of individuals across all phenotypes. When no phenotype transitions are included (i.e. offspring always inherit their
parent’s phenotype) numbers of all individuals are always underestimated. We conclude that by using a phenotypic
gambit approach evolutionary dynamics can be incorporated into individual based models, and that all that is
required is an understanding of the probability of offspring inheriting the parental phenotype.
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Introduction

The world is experiencing unprecedented rates of
environmental change [1] and it would be useful to have the
ability to predict accurately the impact of such changes on the
natural world. Indeed the ability to predict how a system will
respond to perturbations (either experimental or natural) is a
key feature of any scientific discipline [2]. Developing the ability
to project the future states of ecosystems (or components of
ecosystems) has not been a significant endeavour within
ecology [3]. There is a considerable gap between what we
currently know and what we need to know to predict, and to
mitigate against, the impact of environmental change on
ecological systems [1,4,5]. To make predictions about the
ecological impact of environmental change ecologists require
models that can be projected into future changed conditions.

Potentially, organisms can respond to changes in their
environment via one or both of two routes – phenotypic
plasticity and evolution. If a model is realistically to reflect an
ecological response to environmental change it will need to
include evolutionary change and/or phenotypic plasticity as
potential responses to changed conditions [5]. Agent based
models (also known as Individual Based Models - IBMs) link

individuals with populations and through fitness-maximizing
decisions of individuals predict population-level outcomes [6].
Thus, IBMs following phenotypes within a population [7] can be
a powerful tool to predict the effect of natural selection based
upon performance traits [8].

There is no consensus as to how to quantify evolutionary
change and fitness in ecological time scales but there are
some suggested approaches [9,10]. An as yet unutilized
valuable insight comes from the ‘Formal Darwinism Project’
[11]. This project has shown by means of mathematical proof
that individuals act as maximizing agents, with the proposed
maximand being relative lifetime reproductive success [12].
This suggests a way in which evolutionary change can be
incorporated into models at the level of the individual because,
if correct, it suggests that it is reasonable to ignore the
underlying genetics of traits and treat evolution as a process of
phenotypic change.

Seasonally breeding organisms attempt to time their
breeding such that the period of maximum food demand
coincides with maximum food availability. Selection will tend to
favour those individuals whose offspring have peak food
demand when food is most available [13]. This raises the
potential problem that if the timing of food availability changes
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(because climate change alters the temperature of the
environment) then timing of breeding would need to change to
ensure the match between food demand and food availability
was retained. One of the phenomena that appears to be
particularly sensitive to climate change is breeding season
phenology. Some of the best examples of this are found in
birds (e.g. [14]) although there are examples in many other
taxa [15,16]. For example, in a survey of 65 British bird species
about a third were found to be laying significantly earlier
[17,18], though other studies revealed that not all populations
had advanced their breeding phenology [19]. Adapting
fecundity to arrival date and food availability is reported among
migratory birds [20,21]. However, when the environment is
changing rapidly there can be a mismatch between the timing
of food availability and the timing of breeding which results in
lower fitness [22].

There is no doubt that timing of breeding is plastic;
individuals can breed at slightly different times in different years
(e.g. [23]). However, if breeding biology is substantially to
change in response to changing environmental conditions
(beyond phenotypic plasticity), then it needs to evolve. We
considered that there could be two possible responses to
changing environmental conditions during the breeding season
– changing the timing of breeding and changing fecundity
[19,24]. In order to examine how these traits might evolve
under a range of different scenarios we established a set of
simulated environments in which the absolute amount of food
and the window of food availability are changed between
environments while the timing of peak food availability changes
between seasons within environments (Figure 1).

We have chosen to adopt the conclusions of the ‘Formal
Darwinism Project’ [11] and have explored the population
dynamics and fitness of phenotypes, ignoring the genetic or
other mechanisms that may underlie the production of a
phenotype. The principal objective of this paper is therefore to
utilise this approach in order to cope with evolutionary change
in an ecological model.

Methods

The model description follows the proposed protocol for
individual and agent-based models. The model is coded in C#.
The code or an executable file running on Windows is available
on request from the corresponding author. The model
simulates seasonally breeding species that breeds just once
during a season. Input parameters are not based on field data
and thus the model as implemented here does not 'predict'
actual phenotypic changes in a real population; the main
purpose is to provide a theoretical tool for predictive eco-
evolutionary modelling. We have also developed an algorithm
to estimate the probability of offspring inheriting their parent’s
phenotype. Here only the first three sections of the model
description following protocol by [25] are listed (Purpose, State
variables and scales, and Process overview and scheduling)
and the rest of the model description is provided in Supp. 1.
The phenotype inheritance algorithm is provided in Supp. 2.

Figure 1.  Illustration of the three variations of food
availability considered in this model.  a) Scenarios differ in
mean food availability – dark line high mean, pale line low
mean; b) Scenarios differ in the duration food availability (food
availability window), dark line low variance, pale line high
variance; c) Scenarios differ in the timing of food availability.
doi: 10.1371/journal.pone.0071125.g001
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(a) Purpose
The model aims to follow a species that has a breeding

season - the timing and fecundity of which are the traits of
interest. It lives in an environment that varies spatially in the
timing of food availability. Further the environment also varies
stochastically year on year in the timing of peak food
availability. The reproductive success of the organism is
affected by the food availability during a period of time after the
onset of breeding, such that individuals which experience high
food availability have either more or better quality offspring. An
individual’s phenotype determines the time that it breeds and
its fecundity and is inherited by offspring from parents with a
probability that is a function of genetic - environmental
interactions (see section (vii), g(ii), and g(iii) in Supp. 1). We
examine how the timing of breeding in the population responds
to changes in the timing of resource availability (time of peak
resources and a measure of duration of resource availability).

(b) State Variables and Scales
All agents in the model are individuals of the same species

reproducing asexually. Individuals that have not completed the
breeding season in which they were produced are referred to
as juveniles and individuals that have not completed a full year
are referred to as immature. Individuals use resources and
allocate them to growth and reproduction according to six
phenotypes (P). The probability of an offspring having a
particular phenotype given its parent phenotype is given in a
probability matrix (Supp. 2), in which each probability depends
on how many changes need to be made to get from parent’s to
the offspring phenotype. Phenotypes stochastically predispose
the timing of breeding and the number of offspring of
individuals. Combinations of two phenotypic traits, one dictating
the timing of breeding and one dictating fecundity, were
followed [26]. The six phenotypes are referred to as: Early
Prolific (EP), Early non-Prolific (EnP), Mid Prolific (MP), Mid
non-Prolific (MnP), Late Prolific (LP), and Late non-Prolific
(LnP) breeders. Each individual is characterized by three age
variables, adult, juvenile, and immature, and the partitioning of
food resources within the cell between other individuals and
their juveniles through the breeding season. Survival of adults
and juveniles is related to food-specific survival probability
while immature survival is a random process (see section
‘Emergence’). Space is explicit in the model with a simulation
grid of 30 x 30 cells. Prey availability varies between cells. Prey
availability in each cell depends upon three parameters: timing
of peak prey availability (pt), total prey availability during the
breeding season (mean), and width of the prey availability
season (var). All cells have (stochastically) the same mean and
variance of prey availability for a given run, and these
parameters are varied between runs. A high variance makes
the prey distribution over the season more even, corresponding
to a wider food window, but (given a constant mean of food
availability) the potential maximum food quantity per week is
lower although the mean amount of food available throughout
the breeding season is the same. The peak prey time varies
randomly (and uniformly) between years, but is fixed over each
year and the same over all cells. Time follows explicitly 6
weeks of the breeding season with a time step of one week

(thus six time steps each year). The rest of the time within each
year is only modelled implicitly by updating the age of each
surviving individual. Adults can move between each breeding
season time step to any of its neighbouring 8 cells (if food is
more available there), until they start breeding. After the onset
of breeding adults do not move for the rest of the breeding
season.

(c) Process Overview and Scheduling
The model proceeds in weekly time steps following only six

weeks per year corresponding to the breeding season. After
the (six week) breeding season has been concluded, biological
processes occurring outside the breading season are updated
but individuals are not explicitly followed during that period. For
each breeding season (six time steps): Prey availability is
calculated for each week of the breeding season on each cell.
Adults seek for the optimal breeding cells. Adults start breeding
at time determined by their phenotype [27]. Breeding ends at
the end of the breeding season (6 weeks). Adults whose
phenotype does not preose them to breed during the current
week keep on seeking for the optimal breeding cell until week
clocking matches their phenotype clocking for breeding [28].
The number of offspring produced by each adult is determined
stochastically between their phenotype (accounting
stochastically for 30% of the number of offspring produced) and
plasticity to the environment (accounting stochastically for 70%
of the number of offspring produced) [29]. The phenotype-
specific number of offspring produced by any individual is
influenced by their timing of breeding phenotype, with early
breeding phenotypes producing more offspring than late
breeding phenotypes [21]. The phenotype-specific fecundity
was set to EP = 8, EnP = 6, MP = 7, MnP = 5, LP = 6 and LnP
= 4 offspring year-1. Early phenotypes breed during weeks 1,
and 2, Mid during 3, and 4, and Late during 5, and 6. Breeding
always lasts one week. Offspring phenotype is stochastically
inherited from parent (Supp. 2). In the case that the offspring
does not inherit the parental phenotype it acquires one of the
remaining 5 phenotypes with a certain probability (Supp. 2).
The offspring survival depends (stochastically) on food
availability in its cell (food is partitioned between adults and
juveniles) at the time of its birth and in subsequent weeks.
Offspring survival is a natural selection process occurring
stochastically but based upon prey availability in the cell and
density dependence for partitioning food resources among
adults. At the end of the six week breeding season: Adult
survival is a natural selection process of individuals which is a
function of number of offspring produced and total prey
handling of the individual throughout the breeding season [28].
Offspring (juveniles) turn into immatures. At the end of the
year: immatures mature into adults.

Fitness
In order to provide an indicator of phenotype-specific fitness

we followed the individual’s contribution to population growth pti

following the method (de-lifing) proposed by [10], as the
method can be implemented in overlapping generations. The
method calculates lifetime reproductive success on an annual
time step. The method calculates how a population would have
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performed with the focal individual removed over the time step t
to t+1, and it is implemented by retrospectively removing the
individual and any offspring that were produced between t to t
+1 that are still alive at t+1 and recalculating population growth
[10]:

, where st(i) is a binary variable representing whether
individual i survived from year t to t+1, and ft(i) is the number of
offspring produced by individual i in year t that survive to year t
+1 and st̄ and ft̄ are the means of st(i) and ft(i), while At are adults
in time step t. Fitness pti was calculated for each of the six
phenotypes for each simulation scenario and the relative
contribution of individuals of each phenotype to the total
population (individuals of all six phenotypes) in the examined
simulation scenario was recorded.

Statistical Analysis
Linear mixed effects models fitted with maximum likelihood

were used to assess significant relationships between
individuals of each phenotype (dependent variable, repeated 6
times for each phenotype). The model structure included total
prey availability (mean), window of prey availability (var), as
fixed effects, peak week of prey availability during the breeding
season (peak2 ..., peak6) as fixed factor, and year as a random
effect. Inspection of residual plots for constancy of variance
and heteroscedasticity indicated that the models were well
behaved in all cases. Statistical analysis was conducted in R
2.12.0 [30].

Experimental model variants
We sought to quantify whether the level of complexity in the

model is justified [31]. We manipulated model properties (rules)
and recorded the same parameters (see section 'Observation').
Outputs of different model complexity levels were compared
with the 'normal' model case described in this paper in order to
examine the level of complexity that is justified. Note that
essentially this exercise should be conducted by comparing
model outputs deriving from different levels of model detail &
complexity with data; This model is not calibrated with field
data and we are thus unable to compare model outputs with
data, we are comparing model outputs with model outputs
deriving from different complexity levels as an example of how
such comparisons are feasible. To this end we have created
variants of the model in which: (a) There is no timing - all
individuals breed in the middle of the breeding season (Only
Mid phenotypes MP and MnP with phenotype-specific offspring
of 7 and 5 per year respectively). (b) There is no space - the
model has no spatial component, i.e. the environment consists
of a single cell. (c) There are no phenotype transitions (i.e. all
offspring inherits parent’s phenotype) (d) There is no time-
specific productivity- all prolific phenotypes produce 7 while all
non-prolific phenotypes produce 5 phenotype-specific offspring
per year regardless of the time of breeding within the breeding

season). Outputs for the different model complexity levels were
compared against the first (mean=15, var=3) and the last
(mean=35, var=18) prey availability simulation scenarios.

Results

In environments in which there was a high food availability
there were high total number of individuals in the population,
while increasing the duration over which food was availability
marginally increased the total number of individuals (Figure
2a). The increase in the number of individuals with food
availability was not consistent in all phenotypes; early breeding
phenotypes and, to a lesser extent, prolific phenotypes were
more sensitive to changes in food availability than others
(Figure 2b–2g, Supp. 3).

The phenotype-specific linear mixed effects models indicate
that for EP phenotypes increasing the window of food
availability (var) had a negative effect on population sizes,
while increasing food availability had a large positive effect.
The maximum population of EP phenotypes was attained when
food availability peaked in week one and any departure of early
peak in food had a large negative effect (Figure 2 and Figure 3;
for details see also Figure 1 in Supp. 3). The population of EnP
phenotype also decreased with large windows of food
availability, and increased with increased food availability, for
this phenotype maximum population size was reached when
food availability peaked early but not the earliest possible
(maximum attained with a week 2 peak); (Table 1; Figure 2 and
Figure 3).

The population of MP phenotype decreased with large
windows of food availability, and increased with increased food
availability. The optimal peak timing of food for this phenotype
was week 3 (early mid season) followed by week 4 (late mid
season). Early peak (weeks 1 & 2) had a negative effect on the
population size of the MP phenotype with a less strong
negative effect of a late peak (weeks 5, & 6); (Figure 2 and
Figure 3). Larger windows of food availability as well as high
total food availability had a positive effect on the population
sizes of the MnP phenotype. Populations of the MnP
phenotype were higher when the peak of food availability was
fairly late in the season (week 4) but any late peak (week 5 &
6) was positive.

Large windows of food availability as well as high total food
availability had a positive effect on population sizes of the LP
phenotype. For this phenotype the optimal timing of the peak of
food availability was towards the end of the breeding season
(week 5), but any mid–late (week 4) or very late (week 6) peak
had a positive effect (Figure 2 and Figure 3). Similarly, the
population sizes of the LnP phenotype were higher when the
window of food availability was large as well as when there was
high total food availability. The optimal timing of the food peak
was during the last week of the breeding season (week 6) for
this phenotype. An early peak (week 2) had an almost
negligible effect on the population size of LnP while a mid or
late peak apart from very late (weeks 3, 4, and even 5) has a
negative effect (Table 1, Figure 2, and Figure 3).

In all phenotypes the effect of total food availability on
population size was more pronounced than the effect of width
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of the window of food availability. The effect of total food
availability on population size was more pronounced in early
phenotypes than in late phenotypes, and more pronounced in
prolific than in non-prolific phenotypes (Figure 2 and Figure 3).
These effects are summarized in Table 1. Detailed results of
mixed effects models are provided in Supp. 3.

The relative contribution of individuals to the population was
much greater for early phenotypes than for mid and late
phenotypes (Figure 4). Within that pattern prolific phenotypes
always contributed relatively more to the overall population
fitness than non-prolific phenotypes. Both mid and late
phenotypes typically had negative fitness; early phenotypes
made a greater contribution to the overall population fitness at
low food availability scenarios than at high food availability.
Although mid and late breeding phenotypes still had negative
fitness at high food availability it was relatively higher than

when food availability was low. Overall, short windows of food
availability (low values of var) were associated with higher
fitness differences between individuals of the same phenotype.

Any simpler model than the one used here produced
substantial changes in the populations of all phenotypes
(Figure 5). When no timing in the model structure is included
late phenotypes are overestimated while mid and early
phenotypes are severely underestimated (Figure 5a). Outputs
from the spatially implicit model underestimated the number of
individuals across all phenotypes (Figure 5b). When no
phenotype transitions are included (i.e. offspring always inherit
their parent’s phenotype) numbers of all individuals are always
underestimated but this was more pronounced in early and mid
breeding phenotypes (Figure 5c). A model that did not include
a time-specific differentiation in the number of offspring
produced per phenotype underestimated early and mid

Figure 2.  a. Total mean number of individuals (summing all 6 phenotypes) per simulation scenario across 300 simulation
years.  (b-g) Boxplots of (b) Early Prolific, (c) Early non-Prolific, (d) Mid Prolific, (e) Mid non-Prolific, (f) Late Prolific, and (g) Late
non-Prolific phenotypes across all simulation scenarios. Values in vertical axis are individuals per phenotype, horizontal axis depicts
total food availability followed by window of food availability per simulation (see 'Initialization' for a full description of simulation
scenarios). Horizontal lines within boxplots depict mean values, the top of the box is the third quartile Q3 (75% of the data values
are less than or equal to this value) the bottom of the box is the first quartile Q1 (B25% of the data values). The upper whisker
extends to the highest data value within Q3 + 1.5 (Q3 - Q1). The lower whisker extends to the lowest value within Q1 -1.5 (Q3 - Q1).
doi: 10.1371/journal.pone.0071125.g002
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phenotypes, particularly when prey availability was low and of
short duration (Figure 5d) while it overestimated late
phenotypes, in particular when prey availability was high and of
long duration (Figure 5d). The relatively high success of early
breeding individuals is not simply the result of the fact that they
produce more offspring than late breeding individuals as these

still remain the most successful phenotype when the fecundity
differences between birds breeding at different times are
removed.

Figure 3.  Coefficients of mixed effects models per phenotype.  Coefficients of linear mixed effects models of individuals per
phenotype (dependent variable). The model structure included total prey availability (mean), window of prey availability (var), as
fixed effects, peak week of prey availability during the breeding season (peak2 ..., peak6) as fixed factor, and year as a random
effect. For details regarding the statistical analysis see section 'Statistical analysis' and Supplement 3.
doi: 10.1371/journal.pone.0071125.g003

Table 1. Summary of effects of total food availability, length of the window of food availability and the timing of peak food
availability on population sizes of different phenotypes.

 EP EnP MP MnP LP LnP
Total food availability + + + + + +
Length of the window
of food availability

- + + + + +

Week in which peak
of food availability
most positive

1 2 3 4 5 6

Week in which peak
of food availability
most negative

4,5,6 4,5,6 1 1 1 1

Integrating Evolution into Ecological Modelling
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Discussion

Predicting the likely impacts of environmental changes is
becoming increasingly important, as we try to identify and
describe sets of plausible futures given different scenarios of
change [32,33]. It is difficult to envisage how such forecasts
could be produced using anything other than computer models
and that, because of the need to project them into novel future
conditions, such models would need to be process-based
rather than phenomenological [1,4]. While for long-lived
organisms (relative to the length of the model run) it may be
possible to ignore evolutionary change (as is done for trees in
forest gap models [34,35], in most cases it will be desirable to
include the capacity for adaptation through either phenotypic
plasticity or evolution. This seems to be done only rarely [5].

Incorporating evolution within ecological modelling has long
been recognized as a challenging task. Initial attempts were
based on differential equations seeking analytically optimal
mathematical solutions [36–39]. These approaches aimed at
providing (through analytic calculations) the solution to genetic

models but they were neither calibrated with data nor tested
against existing data. More recent integral projection models
(IPM) have been proposed for integrating eco-evolutionary
dynamics and tested against data (e.g. [40]). Further, rigorous
methods for disentangling genetic - environmental interactions
have been proposed [41] and were also tested against data [8].
The approach that we have taken here is to use a
computational approach, which is spatially explicit and allows
population dynamics to emerge. While applying these
approaches are not mutually exclusive with the approach
proposed here, we argue that the approach proposed here is
simple (all that is required is quantifying the ratio of phenotype
inheritance from parents to offspring) but, most importantly,
such a model can demonstrate eco-evolutionary dynamics.

There have been some attempts to incorporate evolution into
ecological modeling computationally: one attempt has been to
create a thought experiment - imagine an ecosystem and
generate insights about what might happen if the world were to
be organised as described [7,42,43]. These results are not
compared to data from a real-life system, nor is there any claim

Figure 4.  Fitness per phenotype calculated as the individual’s contribution to population growth on an annual basis
following the method (de-lifing) proposed by Coulson et al. (2006a).  The method calculates how a population would have
performed with the focal individual removed over the time step t to t+1, and it is implemented by retrospectively removing the
individual and any offspring that produced between t to t+1 that are still alive at t+1 and recalculating population growth (see section
'Fitness').
doi: 10.1371/journal.pone.0071125.g004
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that the model represents any specific system or species.
Nevertheless we can generate insights about what might
happen if the world were to be organised as imagined in such a
manner. Another way forward is to create an IBM that includes
the capacity for evolutionary change using ‘genetic’ rules and
allow the behaviour of individuals to emerge from changes in
the genes that code for the behaviour of interest, and this route
was taken by [44] though the model was not explicitly
calibrated with data at the level of the gene. Finally, an IBM can
be calibrated with data at the level of gene and explicitly
account for both ecological and evolutionary dynamics [45].
However, this is highly demanding of data and may be a
complication too far [46]. Most environmental stakeholders are
not particularly interested in changes in gene frequency; what
is observed and the level of organization about which people
are typically concerned is that of the individual organism. In
addition, computing the solution to a genetic model may not
always be particularly useful; there will be a wide range of
potential models that differ in the details of the genetic

mechanisms that underlie them (and on which we are unlikely
to have data). In the model presented here we have chosen to
utilize differences in phenotype. We argue that this is
potentially both more useful and more relevant to the types of
question that typically need to be addressed. In taking this
stance we are essentially adopting the arguments made for
ignoring the underlying genetics in ESS models – the so called
‘phenotypic gambit’ [47]. In his ‘Formal Darwinism Project’
Grafen has provided robust arguments for the use of the
individual as maximizing agent, with the proposed maximand
being relative lifetime reproductive success [12]. He has
subsequently demonstrated that this approach is equivalent to
the alternative that may be obtained by a population genetic
analysis of changes in genotype frequencies [11]. We propose
that a combination of ‘Formal Darwinism Project’, providing a
justification for examining a system at the level of phenotype
rather than genotype, together with 'de-lifing' [9,10], which
provides a robust fitness index at the level of individuals may
be used as a link between ecology and evolution. Our

Figure 5.  Hypothetical replication of the first (a. mean=15, var=3) and the last (b. mean=35, var=18) prey availability
simulation scenarios with different levels of model complexity: (a) No timing - only Mid phenotypes MP and MnP with
gene-specific offspring per year 7 and 5 respectively.  (b) No space - the environment consist of a single cell. (c) No phenotype
transitions (all offspring inherits parent’s phenotype). (d) No time-specific productivity- all prolific phenotypes produce 7 while all
non-prolific phenotypes produce 5 phenotype-specific offspring per year. Outputs for the different model complexity levels were
normalised against the values of each phenotype in the 'normal' model output. Values are given as a % of the difference between:
[(simpler model - normal model) / normal model] outputs per phenotype.
doi: 10.1371/journal.pone.0071125.g005
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conclusion regarding the principal objective of this work is that
the phenotypic approach has utility when attempting to
accommodate evolution within an ecological model. The main
issue that is resolved is that there is no need to make
assumptions about the underlying genetics of the system; all
that is required is an understanding of the probability of
offspring developing a different phenotype from their parent.
Such data are fairly easy to collect.

In order to illustrate this approach we have explored the
relatively simple problem of when and at what level individuals
organism should breed using an agent based model using as
an example a seasonal breeding species and focusing on
differences between phenotypes and their relative contribution
to the overall population fitness. We have shown that the
frequency distribution of different phenotypes changes in
response to changes in the timing and scale of food availability
during the breeding season. Starting with equal numbers of the
six phenotypes at the start of each simulation we rapidly move
to a situation where one phenotype predominates. Despite the
fact that one phenotype – early and prolific breeding – tends to
dominate the population we never see complete extinction of
any of the six phenotypes. This is partly due to the fact that
phenotypes are constantly regenerated by transitions to other
phenotypes but also because there are some circumstances in
which these alternatives phenotypes perform well. The
observation that all phenotypes continue to exist in the
scenario that has all offspring inheriting their parental
phenotype shows that their persistence is not simply due to
them being regenerated through transitions. Overall, as
implemented in the model, adult survival, offspring survival as
well as the number of offspring produced (optimal clutch size),
factors that ultimately determine survival and fitness, are
implemented in the model by genetic - environmental
interactions: Adults breeding late and immatures born late in
the season have the advantage that they are less exposed to
food shortage late in the season, as adults can reduce the
number of immatures that they produce based upon (low) food
availability (p 122 in [48]). Adults breeding late and immatures
born late have the disadvantage that there is a higher crowding
effect late in the season as there is a higher number of adults
and immatures partitioning food resources (p 122 in [48]).
Further, the model accounts for the lifetime reproductive
success as individuals adapt the number of offspring that they
produce each breeding season (they may even not breed)
upon food availability, modulated by the environmental factor in
the genetic-environmental interaction. It is important to note
that this is in the absence of a directional signal in the timing of
food availability. If such a signal were to be imposed we would
anticipate that timing breeding would respond especially if this
signal was such that favoured early breeding.

How simple can the model become before it loses its ability
to generate realistic predictions? In the theoretical exercise
conducted here, the importance of retaining complexity is
shown by the large change in the numbers of each phenotype
that were obtained when we forced all offspring to inherit the
parental phenotype. It should be noted however that the result
that simpler models somehow under or over-estimated various
phenomena when their details were removed derives here by

comparing model outputs with each other and not model
outputs with data, as it would be preferable. Sometimes simpler
models may be better calibrated to reality and a more detailed
model can over or under estimate reality - it is more a precise
perhaps but less accurate representation of reality. Ultimately
this exercise should be repeated by comparing model outputs
with data and this work here serves as an example of how this
is feasible. It is going to be rare that we have a robust
understanding of genetic mechanisms for any trait of ecological
interest, but data on the probability of offspring inheriting the
parental phenotype are not as difficult to collect. Allowing
offspring to develop phenotypes other than that of their parent
probably results in higher overall populations because in
suboptimal conditions for your phenotype [49], offspring of non-
parental phenotypes will perform better than offspring of the
parental phenotype. Allowing offspring to develop phenotypes
other than that of their parent therefore reduces the number of
‘eggs in one basket’, similar to an ‘tangled bank’ argument for
the evolution of sex [50] and could be regarded as comparable
to one of the classic questions in ecology 'Does diversity beget
stability?' [51]. We also conclude that the spatial dimension is
important; the real world is spatially explicit – individuals are
more likely to interact with neighbours than individuals a long
way away and to move to nearby locations rather than distant
ones. If we do not include spatial structure in our model the
numbers of all phenotypes falls but importantly does not fall in
a uniform manner, e.g. populations of late breeding non-prolific
individuals are barely affected while early prolifically breeding
phenotypes are approximately halved. So making the model
spatially implicit changes the results both qualitatively and
quantitatively, as has been found in other studies [31]. In our
view the changes that were seen when the full model was
simplified justifies the use of the current level of complexity.
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