95 research outputs found
Ecology of a North Sea pockmark with an active methane seep
ABSTRACT: At a large North Sea pockmark, with active methane seeps, surface sediments were found
to have higher insoluble sulphide concentrations than sedlments from the surrounding area. The fauna
of the pockmark was characterized by 2 species which have not pi-evlously been reported from the
Fladen Ground in the northern North Sea. These species were a b~valve, Thyasira sarsi (which is known
to contain endosymbiotic sulphur-oxidising bacteria) and a mouthless and gutless nematode,
Astomonerna sp., which also contains endosymbiotic bacteria The nematode was the dominant
meiofauna species in the pockmark sediments. Both macro-lnfauna and total nematodes were in low
abundance in samples taken from the base of the pockmark. Sediment samples from the pockmark
contained numerous otoliths, implying that substantial winnowing of the sediment had taken place.
This was supported by studies on the sulphide concentrations in the sediment which showed multiple
layering of the sediments on the sides of the pockmark, suggesting displacement. The carbon isotope
compositions (6I3c) of the tissues of benthic animals from in and around the pockmark were generally in
the range -16 to -2O%, indicating that little methane-derived carbon was contributing to their
nutrition. T sarsi had the most 13c-depleted tissues, -31.4 to -35.1 L, confirming the nutritional dependence of this species on chemoautotrophic bacteria that utilize reduced sulphur
Biodiversity and Biogeography of Chthamalid Barnacles from the North-Eastern Pacific (Crustacea Cirripedia)
The biogeography and ecology of the species of Chthamalus present on the west coast of America are described, using data from 51 localities from Alaska to Panama, together with their zonation on the shore with respect to that of other barnacles. The species present were C. dalli, Pilsbry 1916, C. fissus, Darwin, 1854, C. anisopoma Pilsbry 1916 and four species in the C. panamensis complex. The latter are C. panamensis Pilsbry, 1916, C. hedgecocki, Pitombo & Burton, 2007, C. alani nom. nov. (formerly C. southwardorum Pitombo & Burton, 2007) and C. newmani sp. nov.). These four species were initially separated by enzyme electrophoresis. They could only be partially separated by DNA bar coding but may be separated using morphological characters
Cisplatin-induced emesis: systematic review and meta-analysis of the ferret model and the effects of 5-HT3 receptor antagonists
PURPOSE: The ferret cisplatin emesis model has been used for ~30 years and enabled identification of clinically used anti-emetics. We provide an objective assessment of this model including efficacy of 5-HT(3) receptor antagonists to assess its translational validity. METHODS: A systematic review identified available evidence and was used to perform meta-analyses. RESULTS: Of 182 potentially relevant publications, 115 reported cisplatin-induced emesis in ferrets and 68 were included in the analysis. The majority (n = 53) used a 10 mg kg(−1) dose to induce acute emesis, which peaked after 2 h. More recent studies (n = 11) also used 5 mg kg(−1), which induced a biphasic response peaking at 12 h and 48 h. Overall, 5-HT(3) receptor antagonists reduced cisplatin (5 mg kg(−1)) emesis by 68% (45–91%) during the acute phase (day 1) and by 67% (48–86%) and 53% (38–68%, all P < 0.001), during the delayed phase (days 2, 3). In an analysis focused on the acute phase, the efficacy of ondansetron was dependent on the dosage and observation period but not on the dose of cisplatin. CONCLUSION: Our analysis enabled novel findings to be extracted from the literature including factors which may impact on the applicability of preclinical results to humans. It reveals that the efficacy of ondansetron is similar against low and high doses of cisplatin. Additionally, we showed that 5-HT(3) receptor antagonists have a similar efficacy during acute and delayed emesis, which provides a novel insight into the pharmacology of delayed emesis in the ferret
Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment
δ13C of nematode communities in 27 sites was analyzed, spanning a large depth range (from 130 to 2,021 m) in five Antarctic regions, and compared to isotopic signatures of sediment organic matter. Sediment organic matter δ13C ranged from −24.4 to −21.9‰ without significant differences between regions, substrate types or depths. Nematode δ13C showed a larger range, from −34.6 to −19.3‰, and was more depleted than sediment organic matter typically by 1‰ and by up to 3‰ in silty substrata. These, and the isotopically heavy meiofauna at some stations, suggest substantial selectivity of some meiofauna for specific components of the sedimenting plankton. However, 13C-depletion in lipids and a potential contribution of chemoautotrophic carbon in the diet of the abundant genus Sabatieria may confound this interpretation. Carbon sources for Antarctic nematodes were also explored by means of an experiment in which the fate of a fresh pulse of labile carbon to the benthos was followed. This organic carbon was remineralized at a rate (11–20 mg C m−2 day−1) comparable to mineralization rates in continental slope sediments. There was no lag between sedimentation and mineralization; uptake by nematodes, however, did show such a lag. Nematodes contributed negligibly to benthic carbon mineralization
Perspectives and Integration in SOLAS Science
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.
Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.
Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
Meloneis Gen. Nov., a New Epipsammic Genus of Rhaphoneidaceae (Bacillariophyceae)
The diatom family Rhaphoneidaceae is characterized by high generic diversity and low species diversity with most genera known to have long stratigraphic ranges. The genera within this family are neritic marine, and mostly epipsammic. A new modern and epipsammic genus, Meloneis gen. nov., is described herein and is compared to all genera within Rhaphoneidaceae and especially to Rhaphoneis Ehrenberg s.l. Within Meloneis three new species and one variety are distinguished and described herein: M. mimallis sp. nov., M. mimallis var. zephyria var. nov., M. akytos sp. nov., and M. gorgis sp. nov
Meta-analysis of clodronate and breast cancer survival
Clinical trials have reported conflicting results on whether oral clodronate therapy improves survival in breast cancer patients. This study was undertaken to evaluate further the effect of oral clodronate therapy on overall survival, bone metastasis-free survival and nonskeletal metastasis-free survival among breast cancer patients. An extensive literature search was undertaken for the period 1966 to July 2006 to identify clinical trials examining survival in breast cancer patients who received 2 or 3 years of oral clodronate therapy at 1600 mg day−1 compared with those without therapy. Meta-analyses were carried out separately for patients diagnosed with advanced breast cancer and early breast cancer. Our meta-analysis found no evidence of any statistically significant difference in overall survival, bone metastasis-free survival or nonskeletal metastasis-free survival in advanced breast cancer patients receiving clodronate therapy or early breast cancer patients receiving adjuvant clodronate treatment compared with those who did not receive any active treatment
Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island
The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays
an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater.
The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to
study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local
ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP
tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of
anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo
studies were conducted that included discrete sampling for carbonate system parameters. Meridional
tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each
surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic
currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d−1 which is ~0.1% of global
volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.En prens
Metagenomic investigation of vestimentiferan tubeworm endosymbionts from Mid-Cayman Rise reveals new insights into metabolism and diversity
- …
