54 research outputs found

    A General Polynomial Selection Method and New Asymptotic Complexities for the Tower Number Field Sieve Algorithm

    Get PDF
    In a recent work, Kim and Barbulescu had extended the tower number field sieve algorithm to obtain improved asymptotic complexities in the medium prime case for the discrete logarithm problem on Fpn\mathbb{F}_{p^n} where nn is not a prime power. Their method does not work when nn is a composite prime power. For this case, we obtain new asymptotic complexities, e.g., Lpn(1/3,(64/9)1/3)L_{p^n}(1/3,(64/9)^{1/3}) (resp. Lpn(1/3,1.88)L_{p^n}(1/3,1.88) for the multiple number field variation) when nn is composite and a power of 2; the previously best known complexity for this case is Lpn(1/3,(96/9)1/3)L_{p^n}(1/3,(96/9)^{1/3}) (resp. Lpn(1/3,2.12)L_{p^n}(1/3,2.12)). These complexities may have consequences to the selection of key sizes for pairing based cryptography. The new complexities are achieved through a general polynomial selection method. This method, which we call Algorithm-C\mathcal{C}, extends a previous polynomial selection method proposed at Eurocrypt 2016 to the tower number field case. As special cases, it is possible to obtain the generalised Joux-Lercier and the Conjugation method of polynomial selection proposed at Eurocrypt 2015 and the extension of these methods to the tower number field scenario by Kim and Barbulescu. A thorough analysis of the new algorithm is carried out in both concrete and asymptotic terms

    New Complexity Trade-Offs for the (Multiple) Number Field Sieve Algorithm in Non-Prime Fields

    Get PDF
    The selection of polynomials to represent number fields crucially determines the efficiency of the Number Field Sieve (NFS) algorithm for solving the discrete logarithm in a finite field. An important recent work due to Barbulescu et al. builds upon existing works to propose two new methods for polynomial selection when the target field is a non-prime field. These methods are called the generalised Joux-Lercier (GJL) and the Conjugation methods. In this work, we propose a new method (which we denote as A\mathcal{A}) for polynomial selection for the NFS algorithm in fields FQ\mathbb{F}_{Q}, with Q=pnQ=p^n and n>1n>1. The new method both subsumes and generalises the GJL and the Conjugation methods and provides new trade-offs for both nn composite and nn prime. Let us denote the variant of the (multiple) NFS algorithm using the polynomial selection method ``{X} by (M)NFS-{X}. Asymptotic analysis is performed for both the NFS-A\mathcal{A} and the MNFS-A\mathcal{A} algorithms. In particular, when p=LQ(2/3,cp)p=L_Q(2/3,c_p), for cp[3.39,20.91]c_p\in [3.39,20.91], the complexity of NFS-A\mathcal{A} is better than the complexities of all previous algorithms whether classical or MNFS. The MNFS-A\mathcal{A} algorithm provides lower complexity compared to NFS-A\mathcal{A} algorithm; for cp(0,1.12][1.45,3.15]c_p\in (0, 1.12] \cup [1.45,3.15], the complexity of MNFS-A\mathcal{A} is the same as that of the MNFS-Conjugation and for cp(0,1.12][1.45,3.15]c_p\notin (0, 1.12] \cup [1.45,3.15], the complexity of MNFS-A\mathcal{A} is lower than that of all previous methods

    Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The generation of saccades is influenced by the level of "preparatory set activity" in cortical oculomotor areas. This preparatory activity can be examined using the gap-paradigm in which a temporal gap is introduced between the disappearance of a central fixation target and the appearance of an eccentric target.</p> <p>Methods</p> <p>Ten healthy subjects made horizontal pro- or antisaccades in response to lateralized cues after a gap period of 200 ms. Single-pulse transcranial magnetic stimulation (TMS) was applied to the dorsolateral prefrontal cortex (DLPFC), frontal eye field (FEF), or supplementary eye field (SEF) of the right hemisphere 100 or 200 ms after the disappearance of the fixation point. Saccade latencies were measured to probe the disruptive effect of TMS on saccade preparation. In six individuals, we gave realistic sham TMS during the gap period to mimic auditory and somatosensory stimulation without stimulating the cortex.</p> <p>Results</p> <p>TMS to DLPFC, FEF, or SEF increased the latencies of contraversive pro- and antisaccades. This TMS-induced delay of saccade initiation was particularly evident in conditions with a relatively high level of preparatory set activity: The increase in saccade latency was more pronounced at the end of the gap period and when participants prepared for prosaccades rather than antisaccades. Although the "lesion effect" of TMS was stronger with prefrontal TMS, TMS to FEF or SEF also interfered with the initiation of saccades. The delay in saccade onset induced by real TMS was not caused by non-specific effects because sham stimulation shortened the latencies of contra- and ipsiversive anti-saccades, presumably due to intersensory facilitation.</p> <p>Conclusion</p> <p>Our results are compatible with the view that the "preparatory set" for contraversive saccades is represented in a distributed cortical network, including the contralateral DLPFC, FEF and SEF.</p

    Yokukansan Inhibits Neuronal Death during ER Stress by Regulating the Unfolded Protein Response

    Get PDF
    Recently, several studies have reported Yokukansan (Tsumura TJ-54), a traditional Japanese medicine, as a potential new drug for the treatment of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress is known to play an important role in the pathogenesis of AD, particularly in neuronal death. Therefore, we examined the effect of Yokukansan on ER stress-induced neurotoxicity and on familial AD-linked presenilin-1 mutation-associated cell death.We employed the WST-1 assay and monitored morphological changes to evaluate cell viability following Yokukansan treatment or treatment with its components. Western blotting and PCR were used to observe the expression levels of GRP78/BiP, caspase-4 and C/EBP homologous protein.Yokukansan inhibited neuronal death during ER stress, with Cnidii Rhizoma (Senkyu), a component of Yokukansan, being particularly effective. We also showed that Yokukansan and Senkyu affect the unfolded protein response following ER stress and that these drugs inhibit the activation of caspase-4, resulting in the inhibition of ER stress-induced neuronal death. Furthermore, we found that the protective effect of Yokukansan and Senkyu against ER stress could be attributed to the ferulic acid content of these two drugs.Our results indicate that Yokukansan, Senkyu and ferulic acid are protective against ER stress-induced neuronal cell death and may provide a possible new treatment for AD

    Winter weather controls net influx of atmospheric CO2 on the north-west European shelf

    Get PDF
    Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr-1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr-1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr-1)

    Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla

    Get PDF
    Background: As the oceans simultaneously warm, acidify and increase in P-CO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming.Methodology/Principal Findings: We examined the interactive effects of near-future ocean warming and increased acidification/P-CO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P-CO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P-CO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3 degrees C) stimulated growth, producing significantly bigger larvae across all pH/P-CO2 treatments up to a thermal threshold (+6 degrees C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3 degrees C warming diminished the negative effects of acidification and hypercapnia on larval growth.Conclusions and Significance: This study of the effects of ocean warming and CO2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P-CO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations

    New therapeutic targets in Alzheimer's disease: brain deregulation of calcium and zinc

    Get PDF
    The molecular determinants of Alzheimer's (AD) disease are still not completely known; however, in the past two decades, a large body of evidence has indicated that an important contributing factor for the disease is the development of an unbalanced homeostasis of two signaling cations: calcium (Ca2+) and zinc (Zn2+). Both ions serve a critical role in the physiological functioning of the central nervous system, but their brain deregulation promotes amyloid-β dysmetabolism as well as tau phosphorylation. AD is also characterized by an altered glutamatergic activation, and glutamate can promote both Ca2+ and Zn2+ dyshomeostasis. The two cations can operate synergistically to promote the generation of free radicals that further intracellular Ca2+ and Zn2+ rises and set the stage for a self-perpetuating harmful loop. These phenomena can be the initial steps in the pathogenic cascade leading to AD, therefore, therapeutic interventions aiming at preventing Ca2+ and Zn2+ dyshomeostasis may offer a great opportunity for disease-modifying strategies

    A competitive integration model of exogenous and endogenous eye movements

    Get PDF
    We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks. © The Author(s) 2010

    Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers

    Full text link
    corecore