6,730 research outputs found
Institutional features of wage bargaining in 23 European countries, the US and Japan.
This paper presents information on wage bargaining institutions, collected using a standardised questionnaire. Our data provide information from 1995 and 2006, for four sectors of activity and the aggregate economy, considering 23 European countries, plus the US and Japan. Main findings include a high degree of regulation in wage setting in most countries. Although union membership is low in many countries, union coverage is high and almost all countries also have some form of national minimum wage. Most countries negotiate wages on several levels, the sectoral level still being the most dominant, with an increasingly important role for bargaining at the firm level. The average length of collective bargaining agreements is found to lie between one and three years. Most agreements are strongly driven by developments in prices and eleven countries have some form of indexation mechanism which affects wages. Cluster analysis identifies three country groupings of wage-setting institutions.Wage Bargaining ; Institutions ; Indexation ; Trade Union Membership, Cluster Analysis
Keeper-animal interactions: differences between the behaviour of zoo animals affect stockmanship
Stockmanship is a term used to describe the management of animals with a good stockperson someone who does this in a in a safe, effective, and low-stress manner for both the stock-keeper and animals involved. Although impacts of unfamiliar zoo visitors on animal behaviour have been extensively studied, the impact of stockmanship i.e familiar zoo keepers is a new area of research; which could reveal significant ramifications for zoo animal behaviour and welfare. It is likely that different relationships are formed dependant on the unique keeper-animal dyad (human-animal interaction, HAI). The aims of this study were to (1) investigate if unique keeper-animal dyads were formed in zoos, (2) determine whether keepers differed in their interactions towards animals regarding their attitude, animal knowl- edge and experience and (3) explore what factors affect keeper-animal dyads and ultimately influence animal behaviour and welfare. Eight black rhinoceros (Diceros bicornis), eleven Chapman’s zebra (Equus burchellii), and twelve Sulawesi crested black macaques (Macaca nigra) were studied in 6 zoos across the UK and USA. Subtle cues and commands directed by keepers towards animals were identified. The animals latency to respond and the respective behavioural response (cue-response) was recorded per keeper-animal dyad (n=93). A questionnaire was constructed following a five-point Likert Scale design to record keeper demographic information and assess the job satisfaction of keepers, their attitude towards the animals and their perceived relationship with them. There was a significant difference in the animals’ latency to appropriately respond after cues and commands from different keepers, indicating unique keeper-animal dyads were formed. Stockmanship style was also different between keepers; two main components contributed equally towards this: “attitude towards the animals” and “knowledge and experience of the animals”. In this novel study, data demonstrated unique dyads were formed between keepers and zoo animals, which influenced animal behaviour
Profiling filaments: comparing near-infrared extinction and submillimetre data in TMC-1
Interstellar filaments are an important part of star formation. To understand
the structure of filaments, cross-section profiles are often fitted with
Plummer profiles. This profiling is often done with submm studies, such as
Herschel. It would be convenient if filament properties could also be studied
using groundbased NIR data. We compare the filament profiles obtained by NIR
extinction and submm observations to find out if reliable profiles can be
derived using NIR data. We use J-, H-, and K-band data of a filament north of
TMC-1 to derive an extinction map from colour excesses of background stars. We
compare the Plummer profiles obtained from extinction maps with Herschel dust
emission maps. We present 2 methods to estimate profiles from NIR: Plummer
profile fits to median Av of stars or directly to the Av of individual stars.
We compare the methods by simulations. In simulations extinction maps and the
new methods give correct results to within ~10-20 for modest densities. Direct
fit to data on individual stars gives more accurate results than extinction
map, and can work in higher density. In profile fits to real observations,
values of Plummer parameters are generally similar to within a factor of ~2.
Although parameter values can vary significantly, estimates of filament mass
usually remain accurate to within some tens of per cent. Our results for TMC-1
are in agreement with earlier results. High resolution NIR data give more
details, but 2MASS data can be used to estimate profiles. NIR extinction can be
used as an alternative to submm observations to profile filaments. Direct fits
of stars can also be a valuable tool. Plummer profile parameters are not always
well constrained, and caution should be taken when making fits. In the
evaluation of Plummer parameters, one can use the independence of dust emission
and NIR data and the difference in the shapes of the confidence regions.Comment: accepted to Astronomy & Astrophysics; abstract has been shortened for
astrop
Towards a High Diffraction Efficiency of Photorefractive Multiple Quantum Wells
doi:10.1063/1.1994721 http://link.aip.org/link/?APCPCS/772/1579/1We propose a method to improve the diffraction efficiency of photorefractive multiple quantum well devices in the transverse-field geometry. Higher efficiencies have been achieved through systematic electrical modulation studies
Envelope structure of deeply embedded young stellar objects in the Serpens Molecular Cloud
Aperture synthesis and single-dish (sub) millimeter molecular lines and
continuum observations reveal in great detail the envelope structure of deeply
embedded young stellar objects (SMM1, SMM2, SMM3, SMM4) in the densely
star-forming Serpens Molecular Cloud. Resolved millimeter continuum emission
constrains the density structure to a radial power law with index -2.0 +/- 0.5,
and envelope masses of 8.7, 3.0, and 5.3 M_sol for SMM1, SMM3, and SMM4. The
core SMM2 does not seem to have a central condensation and may not have formed
a star yet. The molecular line observations can be described by the same
envelope model, if an additional, small amount of warm (100 K) material is
included. This probably corresponds to the inner few hundred AU of the envelope
were the temperature is high. In the interferometer beam, the molecular lines
reveal the inner regions of the envelopes, as well as interaction of the
outflow with the surrounding envelope. Bright HCO+ and HCN emission outlines
the cavities, while SiO and SO trace the direct impact of the outflow on
ambient gas. Taken together, these observations provide a first comprehensive
view of the physical and chemical structure of the envelopes of deeply embedded
young stellar objects in a clustered environment on scales between 1000 and
10,000 AU.Comment: 46 pages, incl. 12 postscript figures, uses ApJ latex and psfig
macro
The self-dual gauge fields and the domain wall fermion zero modes
A new type of gauge fixing of the Coulomb gauge domain wall fermion system
that reduces the fluctuation of the effective running coupling and the
effective mass of arbitrary momentum direction including the region outside the
cylinder cut region is proposed and tested in the
gauge configurations of RBC/UKQCD collaboration.
The running coupling at the lowest momentum point does not show infrared
suppression and compatible with the experimental data extracted from the JLab
collaboration. The source of the fluctuation of the effective mass near
momentum 0.6GeV region is expected to be due to the domain wall fermion
zero modes.Comment: 12 pages 2 figures, extended arguments and references adde
Exploring the equity of GP practice prescribing rates for selected coronary heart disease drugs: a multiple regression analysis with proxies of healthcare need
Background
There is a small, but growing body of literature highlighting inequities in GP practice prescribing rates for many drug therapies. The aim of this paper is to further explore the equity of prescribing for five major CHD drug groups and to explain the amount of variation in GP practice prescribing rates that can be explained by a range of healthcare needs indicators (HCNIs).
Methods
The study involved a cross-sectional secondary analysis in four primary care trusts (PCTs 1–4) in the North West of England, including 132 GP practices. Prescribing rates (average daily quantities per registered patient aged over 35 years) and HCNIs were developed for all GP practices. Analysis was undertaken using multiple linear regression.
Results
Between 22–25% of the variation in prescribing rates for statins, beta-blockers and bendrofluazide was explained in the multiple regression models. Slightly more variation was explained for ACE inhibitors (31.6%) and considerably more for aspirin (51.2%). Prescribing rates were positively associated with CHD hospital diagnoses and procedures for all drug groups other than ACE inhibitors. The proportion of patients aged 55–74 years was positively related to all prescribing rates other than aspirin, where they were positively related to the proportion of patients aged >75 years. However, prescribing rates for statins and ACE inhibitors were negatively associated with the proportion of patients aged >75 years in addition to the proportion of patients from minority ethnic groups. Prescribing rates for aspirin, bendrofluazide and all CHD drugs combined were negatively associated with deprivation.
Conclusion
Although around 25–50% of the variation in prescribing rates was explained by HCNIs, this varied markedly between PCTs and drug groups. Prescribing rates were generally characterised by both positive and negative associations with HCNIs, suggesting possible inequities in prescribing rates on the basis of ethnicity, deprivation and the proportion of patients aged over 75 years (for statins and ACE inhibitors, but not for aspirin)
Herschel observations of embedded protostellar clusters in the Rosette Molecular Cloud
The Herschel OB young stellar objects survey (HOBYS) has observed the Rosette
molecular cloud, providing an unprecedented view of its star formation
activity. These new far-infrared data reveal a population of compact young
stellar objects whose physical properties we aim to characterise. We compiled a
sample of protostars and their spectral energy distributions that covers the
near-infrared to submillimetre wavelength range. These were used to constrain
key properties in the protostellar evolution, bolometric luminosity, and
envelope mass and to build an evolutionary diagram. Several clusters are
distinguished including the cloud centre, the embedded clusters in the vicinity
of luminous infrared sources, and the interaction region. The analysed
protostellar population in Rosette ranges from 0.1 to about 15 Msun with
luminosities between 1 and 150 Lsun, which extends the evolutionary diagram
from low-mass protostars into the high-mass regime. Some sources lack
counterparts at near- to mid-infrared wavelengths, indicating extreme youth.
The central cluster and the Phelps & Lada 7 cluster appear less evolved than
the remainder of the analysed protostellar population. For the central cluster,
we find indications that about 25% of the protostars classified as Class I from
near- to mid-infrared data are actually candidate Class 0 objects. As a
showcase for protostellar evolution, we analysed four protostars of low- to
intermediate-mass in a single dense core, and they represent different
evolutionary stages from Class 0 to Class I. Their mid- to far-infrared
spectral slopes flatten towards the Class I stage, and the 160 to 70um flux
ratio is greatest for the presumed Class 0 source. This shows that the Herschel
observations characterise the earliest stages of protostellar evolution in
detail.Comment: Astronomy & Astrophysics letter, 6 pages, 4 figures, accepted for
publication in the Special Issue for Herschel first result
What determines the density structure of molecular clouds? A case study of Orion B with <i>Herschel</i>
A key parameter to the description of all star formation processes is the density structure of the gas. In this Letter, we make use of probability distribution functions (PDFs) of Herschel column density maps of Orion B, Aquila, and Polaris, obtained with the Herschel Gould Belt survey (HGBS). We aim to understand which physical processes influence the PDF shape, and with which signatures. The PDFs of Orion B (Aquila) show a lognormal distribution for low column densities until AV ~ 3 (6), and a power-law tail for high column densities, consistent with a ρα r-2 profile for the equivalent spherical density distribution. The PDF of Orion B is broadened by external compression due to the nearby OB stellar aggregates. The PDF of a quiescent subregion of the non-star-forming Polaris cloud is nearly lognormal, indicating that supersonic turbulence governs the density distribution. But we also observe a deviation from the lognormal shape at AV > 1 for a subregion in Polaris that includes a prominent filament. We conclude that (1) the point where the PDF deviates from the lognormal form does not trace a universal AV -threshold for star formation, (2) statistical density fluctuations, intermittency, and magnetic fields can cause excess from the lognormal PDF at an early cloud formation stage, (3) core formation and/or global collapse of filaments and a non-isothermal gas distribution lead to a power-law tail, and (4) external compression broadens the column density PDF, consistent with numerical simulations
Cluster-formation in the Rosette molecular cloud at the junctions of filaments
For many years feedback processes generated by OB-stars in molecular clouds,
including expanding ionization fronts, stellar winds, or UV-radiation, have
been proposed to trigger subsequent star formation. However, hydrodynamic
models including radiation and gravity show that UV-illumination has little or
no impact on the global dynamical evolution of the cloud. The Rosette molecular
cloud, irradiated by the NGC2244 cluster, is a template region for triggered
star-formation, and we investigated its spatial and density structure by
applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and
probability density functions (PDFs) on Herschel column density maps, obtained
within the HOBYS key program. The analysis reveals not only the filamentary
structure of the cloud but also that all known infrared clusters except one lie
at junctions of filaments, as predicted by turbulence simulations. The PDFs of
sub-regions in the cloud show systematic differences. The two UV-exposed
regions have a double-peaked PDF we interprete as caused by shock compression.
The deviations of the PDF from the log-normal shape typically associated with
low- and high-mass star-forming regions at Av~3-4m and 8-10m, respectively, are
found here within the very same cloud. This shows that there is no fundamental
difference in the density structure of low- and high-mass star-forming regions.
We conclude that star-formation in Rosette - and probably in high-mass
star-forming clouds in general - is not globally triggered by the impact of
UV-radiation. Moreover, star formation takes place in filaments that arose from
the primordial turbulent structure built up during the formation of the cloud.
Clusters form at filament mergers, but star formation can be locally induced in
the direct interaction zone between an expanding HII--region and the molecular
cloud.Comment: A&A Letter, in pres
- …
